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Abstract

We introduce the notion of operational resolution, i.e., an isotone map
from a powerset to a poset that meets two additional conditions, which gen-
eralizes the description of states as the atoms in a property lattice (Piron,
1976 and Aerts, 1982) or as the underlying set of a closure operator (Aerts,
1994 and Moore, 1995). We study the structure preservance of the related
state transitions and show how the operational resolution constitutes an
epimorphism between two unitary quantales.

1 Introduction

In Piron (1976), the states1 of a physical entity are defined as the atoms of the
(atomistic) property lattice of that entity2. A complementary approach, founded
in Aerts (1994), takes the collection of states of a physical entity as the underlying
set of a closure space3. In Coecke (1998a) it is shown that in order to describe
individual entities within a compound system, a more general definition for state
is needed. In this paper we define a map, referred to as the operational resolu-
tion, that relates states, which are allowed to be partially ordered, to operational

1To be interpreted in an ontological sense and not as merely statistical objects.
2For a general overview of the physical and operational motives behind this approach we

refer to Piron (1976), Aerts (1982, 1994) and Moore (1999).
3For details, see Aerts (1994), Moore, (1995, 1997, 1999), Valckenborgh (1997)
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properties4. For the case of a single entity, the proposed formulation covers both
’states as atoms in a property lattice’ and ’states as the underlying set of a closure
space’. We show that every operational resolution factors in a closure operator
and a poset embedding that is a lattice isomorphism on its image. Further, we
identify a condition under which state transitions, to be interpreted along the lines
of Amira et al. (1998), are structure preserving in the sense that the operational
resolution, the state transition and its representation within the image of the op-
erational resolution yield a commuting square. Explicitly, we obtain two unitary
quantales5, one for the state transitions and one for their representation within
the image of the operational resolution, between which the operational resolution
determines a unitary quantale epimorphism. At the end of this paper we sketch
some possible further developments involving aspects of orthocomplementation.

2 Operational resolution

Definition 1 For a given collection of states Σ, an operational resolution is de-
fined as a map Cpr : P(Σ) → L, with as codomain a poset6 (L,≤), such that the
following conditions are met (all T, T ′, Ti ∈ P(Σ)):

T ⊆ T ′ ⇒ Cpr(T ) ≤ Cpr(T ′) (1)

∀i : Cpr(Ti) ≤ Cpr(T ) ⇒ Cpr(∪iTi) ≤ Cpr(T ) (2)

T 6= ∅ ⇒ Cpr(T ) 6= Cpr(∅) (3)

In the presence of Eq.(1), one easily verifies that Eq.(2) is equivalent to ∀i :
Cpr(Ti) ≤ Cpr(T ) ⇒ Cpr(T ∪ (∪iTi)) = Cpr(T ). As a first example, we have the
following ’minimal’ operational resolution: for a poset L containing {0, 1}, set
Cpr(∅) = 0 and, for any ∅ 6= T ⊆ Σ, Cpr(T ) = 1. L = {0, 1} is the ’optimal’
codomain for this prescription for Cpr in the sense that it makes Cpr surjective. A
’maximal’ example is the following: L = P(Σ) and Cpr = idL. This prescription
for Cpr works for any poset L that contains P(Σ) with P(Σ) itself as the ’optimal’
partner for this particular Cpr.

We recall that a set Σ equipped with an operator C : P(Σ) → P(Σ) is called
’closure space’, and C is called ’closure operator’ or ’closure’, if the following
conditions are met for all T, T ′ ∈ P(Σ): (C1): T ⊆ C(T ); (C2): T ⊆ T ′ ⇒
C(T ) ⊆ C(T ′); (C3): C(C(T )) = C(T ); (C4)7: C(∅) = ∅. The closure is called ’T1’

4The definition of operational resolution is chosen in such a way that a realist picture (Piron,
1976; Aerts, 1982; Moore, 1999) as well as a somewhat more empiricist picture (Aerts, 1994)
can be held for the emerging operational properties.

5A quantale is a complete lattice equipped with a not-necessarily commutative product &
which distributes over arbitrary joins. They were introduced in Mulvey (1986), for an overview
we refer to Rosenthal (1990).

6’Poset’ is short for ’partially ordered set’.
7Note that this condition is not a standard one.

2



if in addition the following is met: (C5): C({t}) = {t} for all t ∈ Σ. A set F ⊆ Σ
is called ’closed’ if C(F ) = F . The collection of closed subsets will be denoted by
F(Σ) and constitutes a complete lattice, where ∧iFi = ∩iFi and ∨iFi = C(∪iFi).
Remark that F(Σ) is a complete atomistic lattice if the closure is T1: its atoms are
exactly the singletons. If (Σ, C) is a closure space then for L = F(Σ) a surjective
operational resolution is Cpr : P(Σ) → F(Σ) : T 7→ C(T ). More in general: if
θ : F(Σ) → L is a poset embedding that is a lattice isomorphism on its image,
then Cpr = θ ◦ C : P(Σ) → L is an operational resolution. A type of operational
resolution that is ’derived’ from this situation is extensively studied in Amira et
al. (1998): we considered as Σ the states of an entity described by an atomistic
property lattice L, and Cpr = µ−1 ◦ C : Σ→ L where C is the closure on Σ which
has {Fa := {p ∈ Σ | p ≤ a} | a ∈ L} as closed subsets and where µ−1 is the
inverse of the Cartan representation µ : a 7→ Fa.

As last example we consider the following situation: (i) Cpr(1) : P(Σ1) →
L : T 7→ Cpr(1,2)(T × Σ2); (ii) Cpr(2) : P(Σ2) → L : T 7→ Cpr(1,2)(Σ1 × T ); (iii)
Cpr(1,2) : P(Σ1 × Σ2) → L : T 7→ Cpr(1)(π1(T )) ∧ Cpr(2)(π2(T )) with π1 : P(Σ1 ×
Σ2)→ P(Σ1) and π2 : P(Σ1 × Σ2)→ P(Σ2) the respective cartesian projections.
The reader might identify in this an implementation of the notion of coproducts8

im(Cpr(1))
∐

im(Cpr(2)) = im(Cpr(1,2)) of the category of complete lattices, where
the lattice structure of these images is assured by some results that we will prove
further in this paper.

The image of Cpr (that is: im(Cpr) = {Cpr(T ) | T ∈ P(Σ)}) is a subset of L,
thus it inherits the partial order ≤ of L. The next propostion shows that im(Cpr)
is a complete lattice.

Proposition 1 The poset (im(Cpr),≤) is a complete lattice with respect to the
following definition for ’join’: ∀{Ti}i ⊆ P(Σ) : ∨iCpr(Ti) := Cpr(∪iTi). Its bottom
element is Cpr(∅) and its top element is Cpr(Σ).

Proof: Due to Eq.(1) we have ∀i : Cpr(Ti) ≤ Cpr(∪iTi). Suppose that there exists
T ′ ⊆ Σ such that ∀i : Cpr(Ti) ≤ Cpr(T ′). Then, due to Eq.(2), Cpr(∪iTi) ≤ Cpr(T ′),
and thus ∨iCpr(Ti) is indeed the lub of {Cpr(Ti)}i. The rest of the claim is evident.
•
The poset L reversely structurizes Σ through Cpr. Below we study this structure,
and we show how the conditions on Cpr generalize the notion of a closure operator
on a set. More in particular, we associate to an operational resolution Cpr a
collection of Cpr-closed subsets of Σ.

Definition 2 We call T ∈ P(Σ) Cpr-closed if and only if for any T ′ ∈ P(Σ) we
have that T ′ ⊃ T ⇒ Cpr(T ′) > Cpr(T ).

8The coproduct —see for example Borceux (1994)— is by some authors considered as a
description for compound physical systems (Aerts, 1984). For more details on the description of
compound systems within the context of operational resolutions and state transitions we refer
to Coecke and Stubbe (1999).
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We denote the collection of Cpr-closed subsets of Σ by Fpr(Σ). It is evident from
Eq.(3) that ∅ is Cpr-closed, Σ is trivially Cpr-closed. We will now work towards a
characterization of Fpr(Σ). We need two lemmas.

Lemma 1 Define a relation on P(Σ) as follows: T ∼ T ′ ⇔ Cpr(T ) = Cpr(T ′).
(i) ∼ is an equivalence relation.

Denoting the equivalence class of T ∈ P(Σ) as [T ], then:
(ii) ∪[T ] := ∪{T ′ | T ′ ∈ [T ]} ∈ [T ];
(iii) ∪[T ] ∈ Fpr(Σ);
(iv) [T ] contains no other Cpr-closed elements than ∪[T ];
(v) [∅] = {∅}.

Proof: (i) Trivial verification. (ii) Cpr(T ) ≤ Cpr(∪[T ]) is immediate from the
application of Eq.(1) on the trivial fact that T ⊆ ∪[T ]. On the other hand we have
that ∀T ′ ∈ [T ] : Cpr(T ′) = Cpr(T ) from which it follows by Eq.(2) that Cpr(∪[T ]) ≤
Cpr(T ). Hence we conclude that Cpr(T ) = Cpr(∪[T ]) and thus ∪[T ] ∈ [T ]. (iii)
For any T ′ ⊃ ∪[T ] we have by application of Eq.(1) that Cpr(T ′) ≥ Cpr(∪[T ]).
Suppose that Cpr(T ′) = Cpr(∪[T ]) then using (ii) gives that Cpr(T ′) = Cpr(T )
hence T ′ ∈ [T ] and T ′ ⊆ ∪[T ], which contradicts with the assumption. We
conclude that T ′ ⊃ ∪[T ] implies Cpr(T ′) > Cpr(∪[T ]), thus ∪[T ] is Cpr-closed. (iv)
Let F ∈ [T ] be Cpr-closed, then it follows, using (ii), that Cpr(F ) = Cpr(T ) =
Cpr(∪[T ]), and also ∪[T ] ⊇ F . Suppose that ∪[T ] ⊃ F then the Cpr-closedness of
F implies Cpr(∪[T ]) > Cpr(F ) which leads to a contradiction. Hence F = ∪[T ].
(v) Immediate from Eq.(3).
•

Lemma 2 The following maps
(i) φ : P(Σ)/∼ → Fpr(Σ) : [T ] 7→ ∪[T ]
(ii) ψ : Fpr(Σ)→ im(Cpr) : F 7→ Cpr(F )

are bijections with as respective inverses:
(iii) φ−1 : Fpr(Σ)→ P(Σ)/∼ : F 7→ [F ]
(iv) ψ−1 : im(Cpr)→ Fpr(Σ) : Cpr(T ) 7→ ∪[T ]

Proof: Straightforward verifications.
•
Proposition 1 shows that im(Cpr) is a complete lattice, for it inherits the partial
order from L and we constructed a join ∨. Also Fpr(Σ) can be equipped in a
natural way with a join: the join of {Fi}i ⊆ Fpr(Σ) is the smallest element of
Fpr(Σ) that contains all the Fi. Equivalently: the join of {Fi}i ⊆ Fpr(Σ) is the
smallest element of Fpr(Σ) that contains ∪iFi. In anticipation to the following
proposition, we will denote this join in Fpr(Σ) by ∨iFi.

Proposition 2 For (Fpr(Σ),∨) we have that:
(i) ∨iFi = ∪[∪iFi];
(ii) Fpr(Σ) ∼= im(Cpr).
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Proof: (i) Obviously ∪iFi ⊆ ∪[∪iFi], and by part (iii) of Lemma 1 we know that
∪[∪iFi] ∈ Fpr(Σ). If ∪iFi is Cpr-closed then we have by Lemma 1 part (ii) that
∪[∪iFi] = ∪iFi and then indeed ∨iFi = ∪iFi = ∪[∪iFi]. Now consider the case
where ∪iFi is not Cpr-closed, and suppose that there is an F ∈ Fpr(Σ) such that
∪iFi ⊂ F ⊂ ∪[∪iFi]. Then by Eq.(1) we have that Cpr(∪iFi) ≤ Cpr(F ) and by
Cpr-closedness of F we have that Cpr(F ) < Cpr(∪[∪iFi]) ∗= Cpr(∪iFi), using Lemma
1 part (ii) for ∗. This leads to a contradiction, thus there cannot be such an F .
(ii) It is enough to check whether ψ and ψ−1 preserve joins, because then they
are order preserving bijections, thus they yield a lattice isomorphism. We have:
ψ(∨iFi) = ψ(∪[∪iFi]) = Cpr(∪[∪iFi]) = Cpr(∪iFi) = ∨iCpr(Fi) = ∨iψ(Fi), and re-
versely: ψ−1(∨iCpr(Ti)) = ψ−1(Cpr(∪iTi)) = ∪[∪iTi] ∗= ∪[∪i(∪[Ti])] = ∨i(∪[Ti]) =
∨iψ−1(Cpr(Ti)). In both reasonings we used (i) of this proposition, part (ii) of
Lemma 1 and the definition for the join in im(Cpr) cfr. Proposition 1. The valid-
ity of ∗ follows from part (ii) of Lemma 1: ∀i : Cpr(Ti) = Cpr(∪[Ti])⇒ ∨iCpr(Ti) =
∨iCpr(∪[Ti]) ⇒ Cpr(∪iTi) = Cpr(∪i(∪[Ti])) ⇒ [∪iTi] = [∪i(∪[Ti])] ⇒ ∪[∪iTi] =
∪[∪i(∪[Ti])].
•
In the examples we showed how a closure space (Σ, C) and a poset embedding that
is a lattice isomorphism on its image, say θ : F(Σ) → L, define an operational
resolution Cpr = θ ◦ C : P(Σ)→ L. We are now ready to prove a converse.

Proposition 3 Every operational resolution Cpr : P(Σ)→ L ’factorizes’ into:
(i) a closure operator C on Σ: C : P(Σ)→ F(Σ) ⊆ P(Σ) : T 7→ ∪[T ]
(ii) a poset embedding that is a lattice isomorphism on its image: θ : F(Σ) :=

im(C)→ L : F 7→ Cpr(F ).

Proof: (i) We check the closure axioms. (C1): T ⊆ ∪[T ] is obvious, thus T ⊆
C(T ). (C2): T ⊆ U ⇒ Cpr(T ) ≤ Cpr(U) ⇒ ∪[T ] ⊆ ∪[U ] by Eq.(1) and order
preservance of ψ−1, hence C(T ) ⊆ C(U) follows. (C3): ∪[∪[T ]] = ∪[T ] by part
(ii) of Lemma 1, hence C(C(T )) = C(T ). (C4): C(∅) = ∪[∅] = ∪{∅} = ∅. (ii)
Denoting F(Σ) for the C-closed subsets of Σ, we have by construction and by
Proposition 2 that F(Σ) = {C(T ) | T ∈ P(Σ)} = {∪[T ] | T ∈ P(Σ)} = {∪[T ] |
[T ] ∈ P(Σ)/∼ } ∗= Fpr(Σ) ∼= im(Cpr) ⊆ L where ∗ follows from the bijection
φ : P(Σ)/∼ → Fpr(Σ) and where im(Cpr) ⊆ L is a poset embedding.
•
In a first corollary we give some specific features of a Cpr : P(Σ)→ L for which L
is a complete lattice. It should be noted that in general im(Cpr) is not a sublattice
of L: in particular the join of elements of the poset im(Cpr) considered as elements
of the lattice im(Cpr) does not necessarily coincide with the join of these elements
considered as elements of the complete lattice L. To formally distinguish the two
joins, we will use

∨
for the join in L, in contrast to ∨ as notation for the join in

im(Cpr).
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Corollary 1 Consider an operational resolution Cpr : P(Σ) → L for which L is
a complete lattice. Then we have the following:

(i) In the presence of Eq.(1) we have ∀{Ti}i ⊆ P(Σ) :
∨
i Cpr(Ti) ≤ Cpr(∪iTi).

As such, if ∀{Ti}i ⊆ P(Σ) : Cpr(∪iTi) ≤
∨
i Cpr(Ti) then:

∀{Ti}i ⊆ P(Σ) : Cpr(∪iTi) =
∨
i

Cpr(Ti) (4)

(ii) Conversely, Eq.(4) implies Eq.(1) and Eq.(2).
Consequently, any map Cpr : P(Σ)→ L on a complete lattice L with join

∨
, that

meets the condition of Eq.(4), is an operational resolution.

In the case where we consider only one Σ, the powerset of which is mapped on a
poset L through an operational resolution Cpr, we can formally restrict our atten-
tion to the case where Cpr is surjective: the ’relevant’ part of L for determining
the entity’s operational properties is the complete lattice im(Cpr) and thus we can
work with the corestriction Cpr : P(Σ)→ im(Cpr). In a second corollary we study
surjective operational resolutions.

Corollary 2 If Cpr : P(Σ) → L is a surjective operational resolution, then L
is a complete lattice9, Cpr is join preserving, Cpr(∅) is the bottom element of L
and Cpr(Σ) its top element. Moreover, Cpr ’factors’ in a closure C and a lattice
isomorphism θ, that is Cpr = θ ◦ C, where:

(i) C : P(Σ)→ F(Σ) ⊆ P(Σ) : T 7→ ∪{T ′ ∈ P(Σ) | Cpr(T ′) = Cpr(T )};
(ii) θ : F(Σ)−→∼ L : F 7→ Cpr(F );
(iii) θ−1 : L−→∼ F(Σ) : t 7→ ∪{T ′ ∈ P(Σ) | Cpr(T ′) = t}.

To end this paragraph, we give in a third and last corollary a large class of surjec-
tive operational resolutions that arise ’naturally’ in the particular circumstance
that Σ is a ’full set of states’ (Piron, 1976; Aerts, 1982) for a complete lattice L
with join ∨, i.e., Σ is a subset of L that does not contain the bottom element,
with the property that ∀t ∈ L : t = ∨{a ∈ Σ | a ≤ t}.

Corollary 3 Let Σ full set of states for a complete lattice L. Then:

Cpr : P(Σ)→ L : T 7→ ∨T (5)

is surjective and ’factors’ into θ ◦ C where:
(i) C : P(Σ)→ F(Σ) ⊆ P(Σ) : T 7→ {t ∈ Σ | t ≤ ∨T};
(ii) θ : F(Σ)−→∼ L : F 7→ ∨F ;
(iii) θ−1 : L−→∼ F(Σ) : t 7→ {a ∈ Σ | a ≤ t}.

Two important examples are: (i) Σ = L \ {bottom element} for any complete
lattice L; (ii) if L is atomistic then Σ = {atoms in L} is a full set of states in L.
The physical motivation for example (i) can be found in Coecke (1998a). Example

9We denote the join of L = im(Cpr) by ∨.
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(ii) is a translation to our context of the equivalence of complete atomistic lattices
and T1-closure spaces (Aerts, 1994; Moore 1995): it can be verified that in the
situation of this example the ’factor’ C defines a T1-closure on Σ. In any case, the
map θ−1 can be seen as a ’generalized Cartan representation’.

3 State transitions and structure preservance.

In Amira et al. (1998) we intensively studied a specific kind of ’state transitions’
of a physical system in the particular case where the operational resolution is a
T1-closure on a set Σ of states. Here we intend to give a generalization of those
results. We will consider the not-necessarily deterministic state transitions which
respect the operational resolution. As in Amira et al. (1998) we consider a first
formalization of this idea by means of a map f ′ : Σ → P(Σ) : s 7→ f ′(s) where
f ′(s) stands for ”the collection of states that may result after the transition of
the physical system from its initial state s”, thus P(Σ) as codomain expresses the
possible non-determinedness. If Σ is ordered, then obviously f ′ should be order
preserving. Implementing a possible lack of knowledge on the initial state, we
equalize domain and codomain:

f : P(Σ)→ P(Σ) : T 7→ ∪{f ′(s) | s ∈ T} (6)

Such a map has two characterizing properties:
A∅: ∀T ∈ P(Σ) : f(T ) = ∅ ⇔ T = ∅;
A∪: ∀{Ti}i ⊆ P(Σ) : f(∪iTi) = ∪if(Ti).

We denote Q(P(Σ)) = {f : P(Σ) → P(Σ) | f meets A∅, A∪}. We can equip
Q(P(Σ)) with two natural operations: (i) f&f ′ stands for the composition of
transitions, first transition f and then transition f ′; it corresponds to compo-
sition of maps, that is: (f&f ′)(−) = (f ′ ◦ f)(−), and (ii)

∨
i fi stands for the

transition that represents the choice between the fi, or formally equivalent, a lack
of knowledge on the precise state transition; it corresponds to the pointwise join
in P(Σ), that is: (

∨
i fi)(−) = ∪i(fi(−)). In the next proposition we show that

Q(P(Σ)) equipped with these operations
∨

and & has a quantale structure, but
first we give the exact definitions for quantales and quantale morphisms.

Definition 3 A quantale Q is a complete join semi-lattice (Q,
∨

) equipped with
an associative product, & : Q×Q→ Q, which satisfies ∀a, bi ∈ Q:

(i) a&(
∨
i bi) =

∨
i(a&bi);

(ii) (
∨
i bi)&a =

∨
i(bi&a).

A quantale Q is called unitary if there exists a so-called unit element e ∈ Q which
satisfies ∀a ∈ Q : e&a = a = a&e. Given two quantales Q and Q′, we call
F : Q → Q′ a quantale morphism if it preserves & and

∨
. Given two unitary

quantales Q and Q′ with respective units e and e′, we call F : Q → Q′ a unitary
quantale morphism if it is a quantale morphism such that F (e) = e′. A quantale
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Q′ is called subquantale of Q if the injection I : Q′ ↪→ Q : q 7→ q is a quantale
morphism. If Q′ and Q are both unitary, and I is a unitary quantale morphism,
then Q′ is called a unitary subquantale of Q.

Proposition 4 Q(P(Σ)) is a unitary quantale.

Proof: First we show that the operations are internal. Let all f, f ′, fi ∈ Q(P(Σ))
and all T, T ′, Ti, Tj ∈ P(Σ), then:
(i) (f&f ′)(T ) = ∅ ⇔ f ′(f(T )) = ∅ ⇔ f(T ) = ∅ ⇔ T = ∅;
(ii) (f&f ′)(∪iTi) = f ′(f(∪iTi)) = f ′(∪if(Ti)) = ∪i(f ′(f(Ti))) = ∪i((f&f ′)(Ti));
(iii) (

∨
i fi)(T ) = ∅ ⇔ ∪i(fi(T )) = ∅ ⇔ ∀i : fi(T ) = ∅ ⇔ T = ∅;

(iv) (
∨
i fi)(∪jTj) = ∪i(fi(∪jTj)) = ∪i(∪jfi(Tj)) = ∪j(∪ifi(Tj)) = ∪j((

∨
i fi)(Tj)).

Next we show that & distributes over
∨

: ((
∨
i fi)&f)(T ) = f((

∨
i fi)(T )) =

f(∪i(fi(T ))) = ∪i(f(fi(T ))) = ∪i((fi&f)(T )) = (
∨
i(fi&f))(T ); analogously we

have : (f&(
∨
i fi))(T ) =

∨
i(f&fi))(T ). Finally, it is clear that idP(Σ) meets both

A∅ and A∪, and is the unit of the quantale.
•
The correspondence between P(Σ) and im(Cpr) through Cpr suggests that a map
f ∈ Q(P(Σ) is ’seen’ through the operational resolution as follows:

fpr : im(Cpr)→ im(Cpr) : t 7→ Cpr(f(T )) for T ∈ P(Σ) : Cpr(T ) = t (7)

This definition requires that, for any t ∈ im(Cpr) ⊆ L, we choose a T ∈ P(Σ)
for which Cpr(T ) = t and then set fpr(t) = Cpr(f(T )). Of course we need that
fpr(t) is independent of the choice for T , which is exactly the expression of the
idea that the state transition f must respect the operational resolution Cpr. We
can formulate this condition on an f : P(Σ)→ P(Σ) exactly as:

A#: T, T ′ ∈ P(Σ), Cpr(T ) = Cpr(T ′)⇒ Cpr(f(T )) = Cpr(f(T ′)).
We will denote Q#(P(Σ)) = {f ∈ Q(P(Σ)) | f meets A#}. This is the collection
of state transitions that we wanted to describe in the first place. Evidently,
Q#(P(Σ)) inherits the operations

∨
and & from Q(P(Σ)), but there is more.

Proposition 5 Q#(P(Σ)) is a unitary subquantale of Q(P(Σ)).

Proof: First we show that both operations
∨

and & respect condition A#. Let
f, f ′, fi ∈ Q#(P(Σ)) and T, T ′ ∈ P(Σ) with Cpr(T ) = Cpr(T ′), then it follows that:
(i) Cpr(f(T )) = Cpr(f(T ′)) ⇒ Cpr(f ′(f(T )) = Cpr(f ′(f(T ′)) ⇒ Cpr((f&f ′)(T )) =
Cpr((f&f ′)(T ′)); (ii) ∀i : Cpr(fi(T )) = Cpr(fi(T ′))⇒ ∨iCpr(fi(T )) = ∨iCpr(fi(T ′))⇒
Cpr(∪ifi(T )) = Cpr(∪ifi(T ′)) ⇒ Cpr((

∨
i fi)(T )) = Cpr((

∨
i fi)(T

′)). Finally, it is
trivial that idP(Σ) meets A#.
•
In the following lemmas we give some crucial properties of the map Fpr : f 7→ fpr.
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Lemma 3 Let all fi, f, f ′ ∈ Q#(P(Σ)), then:
(i) (f&f ′)pr = fpr&f ′pr where (fpr&f ′pr)(−) = (f ′pr◦fpr)(−) (composition of maps);
(ii) (

∨
i fi)pr =

∨
i fi,pr where (

∨
i fi,pr)(−) = ∨i(fi,pr(−)) (pointwise computation);

(iii) (idP(Σ))pr = idim(Cpr);
(iv) fpr meets A0 : fpr(t) = 0⇔ t = 0 where 0 := Cpr(∅) and t ∈ im(Cpr);
(v) fpr meets A∨ : fpr(∨iti) = ∨i(fpr(ti)) for all {ti}i ⊆ im(Cpr).

Proof: For all t, ti ∈ im(Cpr) we choose T, Ti ∈ P(Σ) such that Cpr(T ) =
t, Cpr(Ti) = ti. Condition A# assures that all computations concerning fpr(t)
can be done via fpr(Cpr(T )) = Cpr(f(T )). Then:
(i)

(f&f ′)pr(Cpr(T )) = Cpr((f&f ′)(T ))

= Cpr(f ′(f(T )))

= f ′pr(Cpr(f(T )))

= f ′pr(fpr(Cpr(T )))

= (fpr&f ′pr)(Cpr(T ));

and
(ii)

(
∨
i

fi)pr(Cpr(T )) = Cpr((
∨
i

fi)(T ))

= Cpr(∪ifi(T ))

= ∨i(Cpr(fi(T )))

= ∨i(fi,pr(Cpr(T )))

= (
∨
i

fi,pr)(Cpr(T ));

(iii) (idP(Σ))pr(Cpr(T )) = Cpr(idP(Σ)(T )) = Cpr(T );

(iv) fpr(Cpr(T )) = Cpr(f(T )) = Cpr(∅) ∗⇔ f(T ) = ∅ ⇔ T = ∅ where ∗ uses Eq.(3);
(v)

fpr(∨iCpr(Ti)) = fpr(Cpr(∪iTi))
= Cpr(f(∪iTi))
= Cpr(∪if(Ti))

= ∨iCpr(f(Ti))

= ∨ifpr(Cpr(Ti)).

•
We denote Q(im(Cpr)) = {g : im(Cpr) → im(Cpr) | g meets A∨, A0}, and equip
this set with

∨
and & defined by pointwise computation and composition of maps

respectively.
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Lemma 4 We have:
(i) Q(im(Cpr)) is a unitary quantale
(ii) Q(im(Cpr)) = {fpr | f ∈ Q#(P(Σ))}.

Proof: (i) Straightforward verification analogous to Proposition 4, the unit of
Q(im(Cpr)) is idim(Cpr);
(ii) Given g ∈ Q(im(Cpr)) define f : P(Σ) → P(Σ) by setting f(X) = Y ⇔
g(Cpr(X)) = Cpr(Y ). We will prove that f ∈ Q#(P(Σ)), and that fpr = g.

(a) f(T ) = ∅ ⇔ g(Cpr(T )) = Cpr(∅) =: 0 ⇔ Cpr(T ) = 0 ⇔ T = ∅, where we
used Eq.(3) in the last step of the reasoning;

(b) By definition of f we have that

∀i : g(Cpr(Ti)) = Cpr(f(Ti)) ⇔ ∨ig(Cpr(Ti)) = ∨iCpr(f(Ti))

⇔ g(∨iCpr(Ti)) = Cpr(∪if(Ti))

⇔ g(Cpr(∪iTi)) = Cpr(∪if(Ti))

⇔ f(∪iTi) = ∪if(Ti);

(c) Cpr(T ) = Cpr(T ′)⇒ g(Cpr(T )) = g(Cpr(T ′))⇒ Cpr(f(T )) = Cpr(f(T ′));
(d) fpr(Cpr(T )) = Cpr(f(T )) = g(Cpr(T )).

•

Proposition 6 Fpr : Q#(P(Σ)) → Q(im(Cpr)) : f 7→ fpr is a surjective unitary
quantale morphism.

Proof: Follows from the lemmas above.
•
It is easy to see that the above results are indeed a generalization of the situation
described in Amira et al. (1998). Consider as operational resolution a T1-closure
Cpr = C : P(Σ)→ F(Σ) ⊆ P(Σ), that is, Σ = {atoms of F(Σ)}. Then, according
to the above, a state transition is a map f : P(Σ)→ P(Σ) that meets A∅, A∪ and
A#. Moreover, we have that fpr : F(Σ)→ F(Σ) : F 7→ C(f(T )) where T ∈ P(Σ)
is chosen in such a way that C(T ) = F . Exploiting F = C(T ) = C(C(T )) it follows
that fpr(F ) = C(f(C(T ))) = C(f(T )) and thus f(C(T )) ⊆ C(f(T )). In Amira et
al. (1998) this condition is given the notation:

A∗ : ∀T ∈ P(Σ) : f(C(T )) ⊆ C(f(T )).
For a map f : P(Σ)→ P(Σ) that meets A∅, A∪ and A∗ it is then argued that it is
’seen’ through the operational resolution as f bispr : F(Σ) → F(Σ) : F 7→ C(f(F )).
However, it can be easily verified that, concerning a map f : P(Σ) → P(Σ) that
meets A∅ and A∪, it is equivalent to work with either condition A# and fpr or
condition A∗ and f bispr .
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4 Conclusions, remarks and further research

Every operational resolution factors in a closure operator and a lattice isomor-
phism on its image. As such, it mathematically generalizes the duality [states ↔
properties], which is also exhibited in the correspondences [underlying set of a clo-
sure space↔ lattice of closed subsets] and [full set of states↔ lattice]. Although
the codomain of the operational resolution is a poset, its image has a lattice struc-
ture in a natural way. Non-deterministic state transitions are formalized, and a
condition for them to preserve the operational resolution is derived. The collec-
tion of structure preserving state transitions forms a unitary quantale, so does
their image through the operational resolution, and between these quantales the
operational resolution suggests a natural surjective quantale morphism.

Within this scheme it is possible to implement aspects of orthogonality, more
or less along the lines of the construction in Aerts (1994) and Valckenborgh (1997).
Suppose that there exists an orthogonality relation ⊥ on L. Then we can define
an orthogonality on Σ by setting p ⊥ q ⇔ Cpr(p) ⊥ Cpr(q), derive an orthocom-
plementation ⊥ : P(Σ)→ P(Σ) : T 7→ {p ∈ Σ | ∀q ∈ T : p ⊥ q} and relate to this
a closure operator C⊥ : P(Σ) → P(Σ) : T 7→ T⊥⊥, where the collection of closed
subsets F⊥(Σ) = {T ⊆ Σ | C⊥(T ) = T} proves to be orthocomplemented. It can
be shown that Fpr(Σ), equipped with the above defined orthogonality relation,
is orthocomplemented if and only if F⊥(Σ) = Fpr(Σ). Obviously, orthocomple-
mentedness of L does not imply orthocomplementedness of Fpr(Σ), not even if
im(Cpr) is a sublattice of L. An interesting situation demonstrating this is that of
three operational resolutions related to the coproduct (cfr. example in section 2),
where the orthocomplementations of im(Cpr(1)) and im(Cpr(2)) do not necessarily
imply an orthocomplementation on im(Cpr(1,2)), but where the separated product
of im(Cpr(1)) and im(Cpr(2)) as codomain L does inherit an orthocomplementation
(Aerts, 1982). It would be worthwhile to investigate the connection between or-
thogonality on Fpr(Σ) and orthogonality on L, and the implications for the state
transitions as we have studied them in this paper10. This is of particular interest
in the study of descriptions of compound systems where the structure preserving
state transitions could play a crucial role (Coecke, 1998a, 1998b).

5 Credits

We are more than happy with the care the referee took in reading this paper, and
for his very detailed remarks and suggestions on formulations and proofs.

10Quantales of maps with underlying orthocomplemented lattices have already been consid-
ered in for example Paseka (1996) and Roman and Zuazua (1996).
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