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Energy level representation in

Energy (E) - Angular momentum (J)

coordinates corrected with the scalar function E(J) to see better the band
structure and the evolution of internal structure of bands as a function of a
strict integral of motion J .

Qualitative features to explain:

i) Rotational clusters (6-fold, 8-fold, 12-fold quasidegenerate)

ii) Modification of cluster structure (appearance of 12-fold cluster as J

increases).

iii) Number of energy levels in a band:
2J + 1 + ∆, ??? ∆ ???

iv) Rules for redistribution of energy levels between branches.
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Typical rovibrational spectrum of a small molecule
AB4

Equilibrium configuration - tetrahedron - Td point group.

Internal degrees of freedom:

Rotation (non-rigid spherical top) + nine vibrations

ν1 - nondegenerate, A1 irrep,

ν2 - doubly degenerate, E irrep,

ν3 - triply degenerate, F2 irrep,

ν4 - triply degenerate, F2 irrep.
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General scheme of qualitative analysis.

Classical limit of effective quantum Hamiltonians.

Symmetry group action analysis.

Simplest Morse type functions.

Qualitative modifications (bifurcations, redistribution, ...)

Topological quantum numbers.
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Examples of classical limit manifolds for effective quantum
Hamiltonians.

Hamiltonian Phase space

Rotational S2

Vib. polyads CPn−1

Rot-vib. polyads S2 × CPn−1

Rydberg S2 × S2

n being the number of degenerate (or quasi-degenerate) vibrational
modes.
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Qualitative tools

One degree of freedom dynamical (reduced) systems.

Classical phase portraits.

Reeb diagrams.

Singularities of classical integrable toric fibrations

Lattices of quantum states and their defects.

Simplest examples of symmetry and topology manifestations.
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(a) (b) (c)

Transition
region

A B1 B2 B3

(a) Schematic representation of the energy level structure for asymmetric top
molecule.

(b) Foliation of the classical phase space (S2 sphere)

(c) Geometric representation of the constant energy sections.
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Examples of symmetry group action on classical limit manifolds.

Images rather than group themselves are important.

Many stationary points are defined by the group action.

Orbits of the group action, isolated in their strata, are critical.

For CF4 molecule the symmetry group is

Td × T ∼ Oh

Td point group extended by time reversal T .

Oh group action on CP1 phase space for vibrational E polyads is
equivalent to natural D3h action on a S2 sphere.
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Simplest Morse type functions:

Rotational energy surface for asymmetrical, symmetrical and spherical top
molecules at low excitation.

(There are two simplest Morse type functions for the rotational energy surface of

AB4 (or AB6, ...) molecule.

As J increases the rotational energy surfaces become typically more
complicated (of non-simplest Morse type). Additional stationary points

appear through bifurcations.
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1 degree of freedom; 1 control parameter

Table 1: Bifurcations in the presence of symmetry. Solid lines denote
stable stationary points. Dash lines - unstable stationary points. Numbers
in parenthesis indicate the multiplicity of stationary points.

(2)
(2)

(n)

(n)

n=3,4

(n)

(n)

n=4,5,6,...

C±

1 CN±

2 CL±

2 CN
n , n = 3, 4 CL±

n , n ≥ 4

I.M. Pavlichenkov, B.Zhilinskii. Critical phenomena in rotational spectra.

Ann. Phys. 184, 1-32 (1988)
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Table 2: Molecular examples of quantum bifurcations in the rotational
structure of individual vibrational components under the variation of the
absolute value of angular momentum, J . Jc is the critical value corre-
sponding to bifurcation.

Molecule Component Jc Bifurcation type

SiH4 ν2(+) 12 CN+
2

SnH4 ν2(−) 10 CN+
2 , CN

3 , CN
4 , CN−

2

CF4 ν2(+) 50 CL+
4

H2Se |0〉 20 CL+
2
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(a) (b)

Imperfect bifurcations.

(a) Position x of stationary points as a function of control parameter λ during a
pitchfork bifurcation in the presence of C2 local symmetry.

(b) Modifications induced by small symmetry perturbation of lower symmetry.

Solid line - stable stationary points. Dash lines - unstable stationary points.

[B. Zhilinskii, I. Kozin, S. Petrov, Spectrochim Acta A 55, 1471-84 (1999)]
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Semi-quantum approach:

One part of variables (rotational) is treated as classical whereas another
(vibrational) as quantum.

Symbol of the Hamiltonian is a matrix defined over classical limit
manifold.

Example: (rotational Hamiltonian for three vibrational states).

H =





















HJ
11(θ, ϕ) HJ

12(θ, ϕ) HJ
13(θ, ϕ)

HJ
21(θ, ϕ) HJ

22(θ, ϕ) HJ
23(θ, ϕ)

HJ
31(θ, ϕ) HJ

32(θ, ϕ) HJ
33(θ, ϕ)





















θ, ϕ are the angles characterizing the orientation of the angular momentum J.

18



Eigenvalues of matrix Hamiltonian play the role of rotational energy
surfaces for different vibrational quantum states.

Presence or absence of degeneracy is extremely important.

Alternative complete classical description of the same model can be done
by a Hamiltonian function defined over classical limit manifold

S2 × CP2

for the complete rotation-vibration problem.
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Vibrational quasi-modes.
27 nonlinear normal modes for triply degenerate vibrational polyads
correspond to 27 relative equilibria on the reduced phase space of the
triply degenerate oscillator (reduced phase space is topologically CP2).

For vibrational nν
(E)
2 polyads (reduced space is topologically CP1 ∼ S2

with D3h action) there are 8 nonlinear normal modes.

CH4 molecule has 63 nonlinear normal modes (one for ν1, 8 for ν2, 27 for
ν3, 27 for ν4).

Montaldi J., Roberts R., Stewart I., Philos. Trans. Roy. Soc. London, A 325, 237–293 (1988);

Zhilinskii B., Chem. Phys. 137, 1-13 (1989).
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Td ( O, Oh) group action on CP2. Five critical orbits include 27 points.
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Qualitative models:

N−degree of freedom reduced systems

Integrable Hamiltonian models

Energy-momentum map images (singular and regular parts)

Toric fibrations with singularities.

Cushman R., Bates L. Global aspects of classical integrable systems. Birkhäuser, Basel, 1997

Duistermaat J.J. On global action angle coordinates. Comm. Pure Appl. Math. 33, 687-706 (1980)

Nekhoroshev N.N. Action-angle variables and their generalizations. Trans. Moscow Math. Soc. 26,

180-198 (1972)

Bolsinov A.V., Fomenko A.T. Integrable Hamiltonian Systems. Chapman& Hall, 2004
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Typical images of the energy momentum map for completely integrable
Hamiltonian systems with two degree of freedom in the case of integer
monodromy, fractional monodromy, nonlocal monodromy, and bidromy.
Values in light shaded area lift to single 2-tori; values in dark shaded area
lift to two 2-tori.
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Two dimensional singular fibers in the case of integrable Hamiltonian
systems with two degrees of freedom (left to right): singular torus,

bitorus, pinched and curled tori.

24



en
er

gy
 h

value of the first action

(a)

en
er

gy
 h

value of the first action

(b)

en
er

gy
 h

value of the first action

(c)

Quantum joint spectra for typical regions of the image of energy -
momentum map for integrable problems.
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Quantum monodromy for 1 : (−1) resonant oscillator system.
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Construction of the 1:(−1) lattice defect starting from the regular Z2

lattice. Dark grey quadrangles show the evolution of an elementary lattice
cell along a closed path around the defect point.

BZ, in “Topology in condensed matter“, Springer series in solid state sciences, vol. 150, 165-186 (2006)
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Construction of 1 : 2 rational lattice defect.

Left: Elementary cell does not pass Right: Double cell passes.

unambigously.

N.Nekhoroshev, D. Sadovskii, BZ, Fractional Hamiltonian monodromy. Ann. Henri Poincaré, 7,

1099-1211 (2006)
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“Wall crossing“ example
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Quantum fractional monodromy for 1 : (−2) resonant oscillator system.

F1 =
ω

2
(p2

1 + q2
1) −

2ω

2
(p2

2 + q2
2) + R1(q, p), (1)

F2 = Im[(q1 + ip1)
2(q2 + ip2)] + R2(q, p). (2)
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Monodromy of swing-spring with 1:1:2 resonance - model of Fermi
resonance in CO2

3D of freedom dynamical system - three resonant nonlinear oscillators -
in the presence of axial symmetry.

CO2 has four vibrational modes: symmetric and antisymmetric stretch and doubly

degenerate bending. Antisymmetric vibration is out of resonance and can be

“neglected“ (averaged).
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Integrable model

L =
1

2
(z2z̄3 − z̄2z3)i, (3)

N = z̄1z1 +
1

2
z̄2z2 +

1

2
z̄3z3, (4)

H = aS + bR + cR2 + E(N, L). (5)

written in terms of invariant polynomials

R = 1
2 z̄2z2 + 1

2 z̄3z3 = (n2 + n3), (6)

S = 1
4(z̄1z

2
3 + z1z̄

2
3 + z1z̄

2
2 + z̄1z

2
2), (7)

T = 1
4(z̄1z

2
3 − z1z̄

2
3 − z1z̄

2
2 + z̄1z

2
2)i, (8)

with z = q − ip, z̄ = q + ip, {z, z̄} = 2i

31



6h

-
`z

Tn

A
A

A
A

A
A

A
AAK

������*

HHHHHHj

Tn/S1

n

Tn/S1

Lz

T
3

A
A

A
A

A
A

AK
T

2

A
A

A
A

AK

�
�
A

AK
S

1

-1
-0.5

 0.5
 1

-0.4
-0.2

 0

 0.2
 0.4

1

0.8

0.6

0.4

0.2

0

Image of the energy momentum map for the 1 : 1 : 2 resonant oscillator
system with axial symmetry (and without detuning). Full 3D-image,
typical constant-n section and fibers.

R.H. Cushman et al, Phys.Rev.Lett. 93, 024302, 2004
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Matrix representation of monodromy for model with 1 : 1 : 2 resonance








1 0 0

2 1 −1

0 0 1









∼









1 0 0

1 1 0

0 0 1









(9)

The monodromy matrix is defined up to similarity transformation
M ∼ AMA−1 with A ∈ SL(3, Z).
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Rearrangement of bands. Topology aspects.
Semi-quantum model.

Slow variables (classical) - a compact phase space M

Fast variables (quantum) - k quantum states at each point of M , i.e. we
have (k bands).

Global construction - complex vector bundle of rank k.

Topological non-triviality is given by Chern classes.

Chern polynomial:

1 + c1x + c2x
2 + · · · ,
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A trivial rank 2 vector bundle over CP1 can be rearranged into two
nontrivial line bundles: 1 = (1 + c1x)(1 − c1x).

Possible rearrangement:

(1+ c  x)

(1+ c  x)

1+(c  +c  ) x 
1+(c  + c) x

1+(c  − c) x

1

1

1 1
1

1
a

b

a

a b
b

Here c gives the number of states transferred from one band to another. PRL, 85, 960 (2000).

A trivial rank 2 vector bundle over CP2 cannot be rearranged into two
nontrivial line bundles because

1 = (1 + c1x)(1 + c′1x) = 1 + (c1 + c′1)x + c1c
′
1x

2 (10)

relation (10) implies that c1 = c′

1
= 0
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The redistribution of energy levels between three bands over CP2

classical phase space is possible

1 = (1 + c1x)(1 − c1x + c2
1x

2). (11)

The first Chern class for the line bundle can be arbitrary, but the first and
the second Chern classes for the complementary rank 2 vector bundle are
non-trivial.

1

1

1

1
1

1+ c  x

1 − c  x + c  x

1

1
2
1

Rank 2 band cannot be decomposed without “touching“ an extra band.

“topological entanglement”
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Three electronic states (H0) with vibronic coupling (H1).

Hλ ([Z]) = (1 − λ) H0 + λH1 ([Z]) , (12)

with H0 = Diag (−1, 0, 1) .

(H1 ([Z]))i,j=1,2,3 = ZiZj/





∑

k=1,2,3

|Zk|
2



 = (|Z 〉〈Z|)i,j .

=

H H
polyad electotH     = = Band "Orth"Band "Line"

Numbers of states in bands:

NLine = (N + 2)(N + 3)/2 ∼ N2/2,

NOrth = N(N + 2) ∼ N2.
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Hydrogen atom in external electric and magnetic fields

H =
1

2
P2−

1

|Q|
+FeQ2+FbQ1+

G

2
(Q2P3−Q3P2)+

G2

8
(Q2

2+Q2
3) = E,

G

Fb

Fe

F

0
(F,G) G2

F 2

ZeemanStark

(G,F)

G2−F 2

L.Michel,B.Zh. Phys.Rep. 341, 175-264 (2001);

K.Efstathiou, D. Sadovskii Rev.Mod.Phys. 82, 2100 (2010).
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0.5  ns=0.2 0.43  ns=0.5

1:2 systems with fractional bidromy (left) and fractional monodromy (right).
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Conclusions
Universal qualitative features observed in the behavior of different
systems stimulated appearance of new mathematical concepts:

fractional monodromy, bidromy, ...

Qualitative mathematical description reveals universal behavior of
different physical, chemical, biological, ... systems.

Spiral phyllotaxis for sunflower - Hamiltonian monodromy.
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