TD 3 – Extension de corps

Exercice 1. Soient $K \subseteq L \subseteq M$ trois corps tel que M/L soit finie. Montrer que les extensions M/L et L/K sont aussi finies.

Exercice 2. Pour quels nombres premiers p et q a-t-on $\mathbb{Q}(\sqrt{p}) \subseteq \mathbb{Q}(\sqrt[3]{q})$?

Exercice 3. Soit L/K une extension de corps, α un élément non nul de L algébrique sur K. Notons P le polynôme minimal de α . Montrer directement $\alpha^{-1} \in K[\alpha]$.

Exercice 4. Montrer que $P=X^3-2$ est irréductible dans $\mathbb{Q}[X]$. Soit $x\in\mathbb{C}$ une racine de P et $L=\mathbb{Q}(x)$.

- **a.** Calculer l'inverse de $y = x^2 + 2x + 3$.
- **b.** Déterminer le polynôme minimal de y.
- **c.** Montrer que tout élément de L/\mathbb{Q} est algébrique de degré $3 \operatorname{sur} \mathbb{Q}$.

Exercice 5. Soit $\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ est algébrique sur } \mathbb{Q} \}.$

- **a.** Montrer que $\overline{\mathbb{Q}}$ est un sous-corps de \mathbb{C} .
- **b.** Montrer que $\overline{\mathbb{Q}}$ est algébriquement clos.

Exercice 6. Soit L/K une extension de corps de degré fini. A chaque $x \in L$ on associe m_x le K-endomorphisme de L obtenu par le multiplication par x dans L.

- **a.** Montrer que $x \mapsto m_x$ est un homomorphisme d'anneaux de L dans $\operatorname{End}_K(L)$.
- **b.** En déduire l'existence d'un polynôme P non nul de K[X] tel que P(x) = 0.

Exercice 7. Soit x et x' deux racines dans $\mathbb{C} \setminus \mathbb{R}$ du polynôme irréductible $P = X^3 - 2 \in \mathbb{Q}[X]$. Posons $K = \mathbb{Q}(x, x')$.

- **a.** Montrer que $i\sqrt{3}$ appartient à K.
- **b.** Montrer qu'on a $\mathbb{Q}(x, x') = \mathbb{Q}(x, i\sqrt{3})$.
- **c.** Montrer $[K:\mathbb{Q}]=6$
- **d.** Soit y la racine réelle de P.
 - i. Montrer que $z = y + i\sqrt{3}$ est racine de

$$Q = X^6 + 9X^4 - 4X^3 + 27X^2 + 36X + 31.$$

ii. Montrer que modulo 7 la décomposition de ${\cal Q}$ en facteurs irréductibles est :

$$Q = (X^3 + X^2 + 5X + 4)(X^3 + 6X^2 + 5X + 6).$$

iii. Montrer que modulo 11 la décomposition de ${\it Q}$ en facteurs irréductibles est :

$$Q = (X^2 + 7X + 7)(X^2 + 7X + 9)(X^2 + 8X + 8).$$

- iv. En déduire que Q est irréductible sur \mathbb{Q} .
- **v.** Montrer $K = \mathbb{Q}(z)$.

Exercice 8. Donner les polynômes minimaux sur $\mathbb Q$ des éléments suivants de $\mathbb C$: $\sqrt{2}+\sqrt{3}$, $\sqrt[3]{7}+\sqrt{2}$, $i+j,j\sqrt{2}$.

Exercice 9. Soit ζ une racine primitive cinquième de 1.

- **a.** Donner le polynôme minimal de ζ sur \mathbb{Q} .
- **b.** Quel est le sous-corps K de $\mathbb{Q}(\zeta)$ engendré par $\mathbb{Q}(\zeta + \zeta^{-1})$?
- **c.** Donner le polynôme minimal de ζ sur K.

Exercice 10. Soit K un corps de caractéristique différente de 2 et L/K une extension de degré 2.

- **a.** Montrer qu'il existe $d \in K^* \setminus (K^*)^2$ tel que $L = K(\sqrt{d})$.
- **b.** Montrer que si $x \in L$, les racines de Irr(x, K) sont dans L.
- **c.** Monter que $(L^*)^2 \cap K = (K^*)^2 \cup d(K^*)^2$.
- **d.** On suppose que $K=\mathbb{Q}$ et $d,d'\in\mathbb{Z}\setminus\{0,1\}$ non divisibles par le carré d'un premier, d'/d non carré dans \mathbb{Q} et $M=\mathbb{Q}(\sqrt{d},\sqrt{d'})$.
 - **i.** Montrer $[M:\mathbb{Q}]=4$.
 - ii. Montrer que M contient un troisième corps quadratique sur \mathbb{Q} .
 - iii. Montrer qu'il n'y a pas d'autre sous corps entre M et \mathbb{Q} .
 - iv. Déterminer $x \in M$ tel que $M = \mathbb{Q}(x)$.