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—for u € S* : |u| its length and T the element of M it represents;

—two S-words u and v are equivalent, denoted by u = v, if they represent
the same element in M, i.e., u = V.

v

e Examples : M = (G3,0), a=(12), b=(23) and S = {a, b}
-3a=(12)o(12)=1s, =% and so aa = ¢ (and also bb = ¢).
—aba=(12)0(23)0(12)=(12)0(132)=(13),

bab=(23)0(12)0(23)=(23)0(123)=(13)

and so aba = bab.
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» |x|s corresponds to the distance from 1y to x in Cay(M, S).

e Definition : For any £ € N, we put
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The spherical growth series of M w.r.t. S is

S(M,S) =" ths =3 "s(M, S;0) t".

xeM LeN

» card (M) = S(M, S)|¢=1.
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Spherical growth series — Example

e Example : M = (63,0), a=(12), b=(23) and S = {a, b}.
(13)

1e,ls =0
I(12)[s=[(23)[s=1
[(123)[s =[(132)[s=2
I(13)]s=3

e Example : 1 if¢=0o0orf=3,
5(63,5,0) =<2 ifl=1orl=2,
0 ifl>4

and so (83, S) = 1+ 2t + 22 + 3.
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» Geodesic S-words correspond to geodesic paths on Cay(M, S).

e Definition : For any £ € N, we put
g(M,S;0) =card ({u € S s.t. |u| = |t|ls = £}).

The geodesic growth series of M w.r.t. S is
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ues” £eN
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Geodesic growth series — Example

e Example : M = (63,0), a=(12), b=(23) and S = {a, b}.
(13)

b

Geodesic S-words are

(123) (132)
—-&
b a —aand b
(12) 23) — ab and ba
— aba and bab
1g,
e Example : 1 ifl=0
g(63,5:0)=¢2 ift=1orl=2o0rl=3,

0 if¢>A4.

and so G(&3,5) = 1 + 2t + 2t% + 2¢£3.
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Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

0 = 00 s
<U1....,0n1 i0; — g0i for i —j| > 2 > (1)

0i0j0j 0j0i0j for|ifj|:1

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

gi0; = 0;0; for [i—j| =2
<(71~---:Un1 Ij: g | J|/ >

0i0jo; gjoioj for |i—jl=1

o Definition : For all n > 2, we denote by X! the set {01, ey On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

gi0; = 0;0; for [i—j| =2
<(71~---:Un1 Ij: g | J|/ >

oigjo; = gjojoj for |i—jl=1

o Definition : For all n > 2, we denote by X! the set {01, .y On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

» As a group B, is generated by ¥ .

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

gi0; = 0;0; for [i—j| =2
<(71~---:Un1 Ij: g | J|/ >

oigjo; = gjojoj for |i—jl=1

o Definition : For all n > 2, we denote by X! the set {01, .y On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

» As a group B, is generated by ¥ .
» But, as a semigroup, it is generated by X, with relations (1)
together with 0,0, =00 = ¢ forall i € {1,...,n}.

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

0 = 00 s
<U1....,0n1 i0; — g0i for|/. J_|/2 > (1)

oigjo; = gjojoj for |i—jl=1

o Definition : For all n > 2, we denote by X! the set {01, .y On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

» As a group B, is generated by ¥ .
» But, as a semigroup, it is generated by X, with relations (1)
together with 0,0, =00 = ¢ forall i € {1,...,n}.

e Definition : Bj, is the submonoid of B, generated by X}. )

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

gi0; = 0;0; for [i—j| =2
<(71~---:Un1 Ij: g | J|/ >

0i0jo; gjoioj for |i—jl=1

o Definition : For all n > 2, we denote by X! the set {01, .y On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

» As a group B, is generated by ¥ .
» But, as a semigroup, it is generated by X, with relations (1)
together with 0,0, =00 = ¢ forall i € {1,...,n}.

e Definition : Bj, is the submonoid of B, generated by X}. )

» B, is the group of fractions of B},.

8/35



Artin’s presentation of braid groups

e Theorem (E. Artin 1925) : The braid group B, is presented by

oi0;] = 00} for [i—j| =2
<(71~---:Un1 IJ: g | J|/ >

0i0j0j 0j0i0j f0r|lfj|:].

o Definition : For all n > 2, we denote by X! the set {01, .y On-1}
and by ¥, the set ¥' L (X3) " = {o71,..., 07, J

» As a group B, is generated by ¥ .
» But, as a semigroup, it is generated by X, with relations (1)
together with 0,0, =00 = ¢ forall i € {1,...,n}.

e Definition : Bj, is the submonoid of B, generated by X}. )

» B, is the group of fractions of B},.
» As a semigroup By, is presented by (1).
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Artin growth series of braid groups

e Theorem (L. Sabalka 2004) :
G(B3, X3) =

t*+3t3+t+1

(2+2t—1)(2+t—1)

» Construction of an explicit deterministic finite states automaton.

e Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees,
he also obtains

N EIES

(t+D)(3-t2+t-1)
(t—1)(Qt—1)(t2+t—1)

e In her PhD, M. Albenque computes the first 13 terms of s(By, X4; £). J

» She obtains s(Ba, X4;12) = 2975728.

e Open question: Do G(B,,X,) and S(B,, ~,) are rationals for n > 47 J
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Artin growth series of braid semigroups

e Fact : As every X -word is geodesic, G(B;, X} is irrelevant. J

e Theorem (A. Bronfman 2001) : We have

S(B, X)) =
( n n) Pn(t)
where P,(t) is given by

n

M (1) P,i(1)

i=1

with Py(t) = Pi(t) = 1.

» Generalized to positive braid semigroups of types B and D by

M. Albenque and P. Nadeau in 2009 using Viennot's heap of pieces.
» And for all spherical Artin—Tits semigroups by R. Flores

and J. Gonzalez-Meneses in 2018.
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e Definition : We denote by B* the submonoid of B, generated by > *. J

» The group of fractions of B,* is also B,.
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3 (n—1+k)(—t)k

S8y 20 = kz:;) (n—1— k)ki(k +1)!

» G(B,*,X.") is irrelevant as every X./*-word is geodesic.
» They obtain similar results for dual braid monoids of type B and D.

e Except for n = 2, which is obvious, | can’'t found any result on
S(Bn, %) or G(B,, X%) in the litterature.

e Fact : We have 3 = ¥} = {07!} and

5(B2, {0}) = G(Bo, {01}) = G(Z., {#1}) = ~F°

T1-¢
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— g(Bn, Snit) =card ({u € S} s.t. |u| = |U|s, = £}).

» Efficient as possible, in particular in the case of n < 4.
» Here we focus on s(B,, Sy; ).

e Compute as many terms as possible of s(B,, S,; ) and g(B,, Sy; )
with n =4 for S, =X, and n = 3,4 for S, = X.

e Try to guess rational values for
— S8(Bs, X4) and G(Ba, X4),
- S8(Bs,X%) and G(Bs, %),
— S(Bs,x}) and G(Bs, X3).
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e Examples : We have B,(S,;0) = {1} and so {¢} I B,(S,;0).
With a little more work we obtain S, = B,(S,; 1).

e Question: How to determine if a given S,-word u is geodesic ?

» No good algorithms.
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Representative sets : inductive construction

Assume ¢ > 2.

e Lemma : Let v be a geodesic S,-word of length / — 1 and « € S,,.

If the word u «v is not geodesic, then there exists a geodesic S,-word w
of length ¢ — 2 satisfying w = v a.
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e Lemma : Let v be a geodesic S,-word of length / — 1 and « € S,,.

If the word v« is not geodesic, then there exists a geodesic S,-word w
of length ¢ — 2 satisfying w = u «.

e Definition : We say that an S,-word u appears in a subset W of S;
whenever u is equivalent to a word of W, denoted u <1 W.

e We now tackle the construction of a representative set of B,(Sy; ¢).
Assume we have constructed :

Wy_s b B(Sni €—2) and Wy_1 b By(Sn; €—1).
We then construct
- W/ ={uafor (u,a) € Wy_1 x Sp},
— W] by keeping words u of W}’ that do not appear in W;_»,

— W, from W, by keeping only one word in each =-classes.
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A first algorithm

o Algorithm (Wp_z F By(Sn; €—2), Wy—1 F Bp(Sni €—1)) :
for u € Wy, do
forac€ S, do
Vi ua
if v 4W,_, and v £4W, then
Wy < Wy U {v} A new braid V of B,(Sp; ) is found.
end if
end for
end for
return W,
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o Algorithm (Wp_z F By(Sn; €—2), Wy—1 F Bp(Sni €—1)) :
for u € Wy, do
forac€ S, do
Vi ua
if v 4W,_, and v £4W, then
Wy < Wy U {v} A new braid V of B,(Sp; ) is found.
end if
end for
end for
return W,

e Question: How to test if a S,-word u appears in a subset W of S 7 J
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Representative sets implementation

e A S,-word u is naturally represented as an array of size |u|. J
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Representative sets implementation

e A S,-word u is naturally represented as an array of size |ul. J

Les W be a finite subset of S;; and u be a S,-word. Does u appear in W7

e A first idea : Representing W by an array and use Garside normal
form to detect equivalences.

» u <1 W requires at most O(|W/|) test of equivalence =,
» Garside normal form does not preserve geodesic words.

e A second idea : Representing W by an ordered array using braid
ordering introduced by P. Dehornoy.

» u <1 W requires at most O(log(|W/|)) comparisons.
» Better but we can do more in this direction.
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e Assume we have a map h: Sf—N s.t. h(u) = h(v) whenever u = v.
We can then represent a subset W of S; using a hash table :

Sp-words

h
|
|
|
|
|
I
I
|
|
|
|
|
|
|

Use of a hash table

arrays of S,-words

buckets

100 | +——[ ABa[®]
101 | -

ole et s
103 [® | abA [®]
104 o
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Use of a hash table

e Assume we have a map h: Sf—N s.t. h(u) = h(v) whenever u = v.
We can then represent a subset W of S; using a hash table :

100 | +——[ ABa[®]
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Use of a hash table

e Assume we have a map h: Sf—N s.t. h(u) = h(v) whenever u = v.
We can then represent a subset W of S; using a hash table :

Sp-words h buckets arrays of S,-words
1 5
1
1
1
1

100 | +——[ ABa[®]

aBA . 101 |
e ><< G
Aba : 103 [abA] +—f Aba[®]
e g
G [2BA[)

We want to insert aBA, bab, Aba if they do not appear in W.

» In average case, insertion has a constant time complexity
and a linear one in worst case.
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z; = intersection number of the lamination with the edge e;.
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e Definition : For u € S}, we put pp(u) = (X1, ¥1,- -+ Xn, ¥n) € Z".
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X; = (z3; — z3i11)/2 and y; = (z3i—1 — Z3i42)/2

e Definition : For u € S}, we put pp(u) = (X1, ¥1,- -+ Xn, ¥n) € Z". J

e Examples : pp(1) =(0,1,0,1,0,1) and pp(o1) = (1,0,0,2,0,1). J
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e Fact : Dynnikov's coordinates pp(u) can be easily computed. J

» At most O(|u|) elementary op. in the semiring (Z U {+oc0}, max, +).

e Theorem (I. Dynnikov 2002) For two S, words u and v, we have
po(u) = pp(v) & u=v

and Dehornoy ordering relation & < V can be read on pp(u~1tv).

o Definition : For u € Sy we define

7
h(u) = Z rem (c;,256) 256/
i=0
where (co, ..., c7) = pp(u) and rem (c,256) is the reminder of a = 256.

» h(u) is an integer of [0,2%% — 1],
» well-suited for 64-bits computers.
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Bottleneck

e Fact : With the current version of our algorirhm, the computation of
W, & Bn(Sh; £) requires to have two sets loaded in memory :

- W1 = Bn(sn;g - 1),
- Wg_g F B,,(S,,;E — 2)

» As RAM capacity is not so big (some Go), we have a problem.
» Massive use of swap memory, which impact performences.

o |dea : Divides B,(Sn; ) on many independant pieces. J

» Reduce RAM consumption.
» Allow parallelization.

22/35



Braid permutaion

e Definition : 7 : B, — &, is the morphism defined by 7(c;) = (i i+1). J
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e Definition : 7 : B, — &, is the morphism defined by 7(c;) = (i i+1). J

» () is the permutation of &, such that the strand
ending at position 7 starts at position 7(/3)(/).

e Example : g = 010510102,
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Braid permutaion

e Definition : 7 : B, — &, is the morphism defined by 7(c;) = (i i+1). J

» () is the permutation of &, such that the strand
ending at position 7 starts at position 7(/3)(/).

e Example : g = 0102’10102,

() -12eya2ey=(; 1 ;)

T(B)(1) = 3 —
~(8)(3) = 2 /1 2
XX

m(B)(2) =1 1
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Linking numbers

e Definition : Let 8 € B, and i,j € {1,...,n} with | # j.
The linking number ¢; ;(3) is the algebraic number of crossings
involving the strands / and j in .
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Linking numbers

e Definition : Let 8 € B, and i,j € {1,...,n} with | # j.
The linking number ¢; j(3) is the algebraic number of crossings
involving the strands 7/ and j in (.

E le :
e Example 5 _ﬂ_ lir=2
D @ Gl

14 4173:1
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Linking numbers

e Definition : Let 8 € B, and i,j € {1,...,n} with | # j.
The linking number ¢; j(3) is the algebraic number of crossings
involving the strands / and j in 3.

e Example :

3w £12:
2 ~ liz=—1
O

51,3 =1

e Lemma : For 8, vin B, and 1 </ < j < nwe have

Cij(B-7) = €ij(B) + Lrg)-1(),m(8)-2() (V)5
with the convention ¢, 4 = ¢, , for p > q.
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Linking numbers

e Definition : Let 8 € B, and i,j € {1,...,n} with | # j.
The linking number ¢; j(3) is the algebraic number of crossings
involving the strands / and j in 3.

E le :
e Example 37{ lrr=2
2 ~ liz=—1

O

51,3 =1

e Lemma : For 8, vin B, and 1 </ < j < nwe have

Cij(B - 7) = 4ij(B) + Laisy-1(i),m(8)-1() (V)
with the convention ¢, 4 = ¢, , for p > q.

e Corollary : For a € Sy, ¢; j(B - ) depends only of £, .(8) and 7(5). |
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Braid template

e Definition : The template of 8 € B, is
nln+1)
7(B) = (7(8),£1,2(B), - - - s bn—1,n(B)) € B X L2
For ¢ € N, we put T,(Sn;¢) = 7 (Bn(Sn; £)).

» u=v implies 7(7) = 7(V).
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For ¢ € N, we put T,(Sn;¢) = 7 (Bn(Sn; £)).

» u=v implies 7(7) = 7(V).

e Fact : For 3 € B, and a € S, the template 7(8) © o = 7(B )
depends only of 7(8) and «.
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Braid template

e Definition : The template of 8 € B, is
nlnt1)
7(B) = (7(8),£1,2(B), - - - s bn—1,n(B)) € B X L2
For ¢ € N, we put T,(Sn;¢) = 7 (Bn(Sn; £)).

» u=v implies 7(7) = 7(V).

e Fact : For 3 € B, and a € S, the template 7(8) © o = 7(B )
depends only of 7(8) and «.

e Definition : For t € T,(S,;¢) we write
B,(Sn; 6, t) = {B € B,(Sn; ¢) s.t. 7(B) = t}.
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Braid template

o Definition : The template of 5 € B, is
nlnt1)
7(8) = (m(8), £1,2(8), - - - s €n-1,n(B)) € G X L™ 2
For ¢ € N, we put T,(Sn;¢) = 7 (Bn(Sn; £)).

» u=v implies 7(7) = 7(V).

e Fact : For § € B, and a € S, the template 7(8) © a = 7(8 )
depends only of 7() and «.

e Definition : For t € T,(S,;¢) we write
B,(Sn; 6, t) = {B € B,(Sn; ¢) s.t. 7(B) = t}.

» The sets B,(Sy; ¢, t) provide a partition of B,(S,; £).
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Braid template

o Definition : The template of 5 € B, is
nlnt1)
7(8) = (m(8), £1,2(8), - - - s €n-1,n(B)) € G X L™ 2
For ¢ € N, we put T,(Sn;¢) = 7 (Bn(Sn; £)).

» u=v implies 7(7) = 7(V).

e Fact : For § € B, and a € S, the template 7(8) © a = 7(8 )
depends only of 7() and «.

e Definition : For t € T,(S,;¢) we write
B,(Sn; 6, t) = {B € B,(Sn; ¢) s.t. 7(B) = t}.

» The sets B,(Sy; ¢, t) provide a partition of B,(S,; £).

e Fact :
Bo(Snil,t) = | J {B-a with B € By(Spit—1,t©a ")}

a€S,
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Parallelization

e Assume we have stored a representative sets of B,(Sy; ¢',t)
for all ¢/ < ¢ and all template t’ € T,(Sn; ¢').
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Parallelization

e Assume we have stored a representative sets of B,(Sy; ¢',t)
for all ¢ < ¢ and all template t' € T,(Sn; ¢').

» On a hard disk typically.

e Algorithm (Storing a representative set of B,(Sp, ¢, t)) :
VV%,t +— 0
Wi_2+ < Load(¢ — 2, t)
fora € S, do
' +—toal
Wffl,t’ = Load(€ -1, tl)
for ue W,_ 1,t/ do
Vi ua
if vAWy_>. and v 4W;; then
‘/1/%7 t l/bﬂgyt (] { % }
end if
end for
end for
Save(W,, ¢, t)
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Stable bijection

e Definition : A bijection p of S is S,-stable whenever :
— 1 preserves the word length,
—for all u, v in S} we have u(u) = u(v) & u=v

— for all u € S}, the template 7(p(u)) depends only of 7(@)
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Stable bijection

e Definition : A bijection p of S is S,-stable whenever :
— 1 preserves the word length,
—for all u, v in S} we have u(u) = u(v) & u=v

— for all u € S}, the template 7(p(u)) depends only of 7(@)

e We have the following diagram

14 iad l
Sp — 5,

| I

To(Snil) —— To(Smi )
%

27/35



Stable bijection

e Definition : A bijection p of S is S,-stable whenever :
— 1 preserves the word length,

— for all u, v in S; we have u(u) = u(v) & u=v

— for all u € S}, the template 7(u(u)) depends only of 7(7)

e We have the following diagram

L H L
Sn Sn

Tl f

To(Snil) —— To(Smi )
7

e Proposition : If W = B,(Sn; 4, t) then (W) F B,(Sy; 4, 1 (t))

27/35



Stable bijection

e Definition : A bijection p of S is S,-stable whenever :
— 1 preserves the word length,

— for all u, v in S; we have u(u) = u(v) & u=v

— for all u € S}, the template 7(u(u)) depends only of 7(7)

e We have the following diagram

L H L
o ——— 5

Tl f

To(Snil) —— To(Smi )
7

e Proposition : If W = B,(Sn; 4, t) then (W) F B,(Sy; 4, 1 (t))

» It is sufficient to compute only one of these sets.
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Stable bijections — Artin case

Here S, = ¥, and we fix £ > 2.
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Stable bijections — Artin case

Here S, = ¥, and we fix £ > 2.
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Stable bijections — Artin case

Here S, = X, and we fix £ > 2.

e Definition :
invy, (x1 -+ x¢p) = (X[1 . -xl_l)
mirs, (x1 -+ x¢) = (x¢ -+ x1)

Oy, (x1:--x0) = (Pn(x1) - - Pm(x0)) where ®,(07) = o,

n—i

» They are all ¥ ,-stable.
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Stable bijections — Artin case

Here S, = X, and we fix £ > 2.

e Definition :
inve, (- xe) = (g o xg )
mirs, (x1 -+ x¢) = (x¢- -+ x1)
Oy, (x1:--x0) = (Pn(x1) - - Pm(x0)) where ®,(07) = o,_;

» They are all ¥ ,-stable.

e Lemma : The subgroups Gs, of bijections of T,(X,;¢) generated

by {invy , mir{ ,®{ } is isomorphic to (2/27)°.
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Stable bijections — dual case

Here S, = X} and we fix £ > 2.
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Stable bijections — dual case

Here S, = X} and we fix £ > 2.

o Definition :
ian:l: (X]. .. 'Xf) — (X[l Ce X;l)

prx (- xe) = (pnlx1) - - @nlxe))

afq . Ifj<n,
onlat) =1 S
ajiq  ifj=m

where

» They are all X}-stable.
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Stable bijections — dual case

Here S, = X} and we fix £ > 2.

o Definition :
ian;k (X]. .. 'Xf) — (X[l Ce X;l)

prx (- xe) = (pnlx1) - - @nlxe))

atq i1 Ifj<n,
palat)) = § a2
a1i+1 T = m.

where

» They are all X}-stable.
» No counter part of mirs,.
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Stable bijections — dual case

Here S, = X} and we fix £ > 2.

e Definition :
invz,nk (Xl oo 'Xf) = (X[l .. 'Xfl)

pxx(x - xe) = (enlx1) - nlxe))
where

ey Jatya ifi<n,
Lp”(a"’f) - e ae 5
aj; ., ifj=m

» They are all X}-stable.
» No counter part of mirs,.

e Lemma : The subgroups Gsx of bijections of T,(X;; () generated

by {invy, ¢y} is isomorphic to Z/2Z x Z/nZ.
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Template reduction

Sn denotes either X, or X7
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Template reduction

S denotes either X, or X%

e Definition : A template t € T,(S,) is reduced if it is minimal in Gs,*t. J
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Template reduction

S, denotes either X, or X%

o Definition : A template t € T,(S,) is reduced if it is minimal in Gs, t. J

e Proposition :

$(Bn, Sp; 0) > card(Ba(Sni 4, t))

tET,(Snib)

Z card (Bn(Sn; ¢, t)) x card (Gs, x t)

tE Th(Snik)
t reduced
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Template reduction

S, denotes either X, or X%

o Definition : A template t € T,(S,) is reduced if it is minimal in Gs, t. J

e Proposition :

$(Bn, Sp; 0) > card(Ba(Sni 4, t))

tET,(Snib)

Z card (Bn(Sn; ¢, t)) x card (Gs, x t)

tE Th(Snik)
t reduced

» Can be effictively used from an algorithmic point of view.
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Experimentation

e Implementation : Distribued C++ code based on a clients / server model. J

31/35



Experimentation

e Implementation : Distribued C++ code based on a clients / server model. J

e Machine : A node of the computationnal plateform Calculco with
— 256 Go of RAM memory
— 2 processors with 64 cores each for a total of 128 cores
— with an access to a distribued storage space of 30 To
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Experimentation

e Implementation : Distribued C++ code based on a clients / server model. J

e Machine : A node of the computationnal plateform Calculco with
— 256 Go of RAM memory
— 2 processors with 64 cores each for a total of 128 cores
— with an access to a distribued storage space of 30 To

e Validation of L. Sabalka formulas :

(t+D3 -2 +t-1)

(t—1)t-1)(t2+t-1)
t*+3t3 +t+1

(2+2t—1)(2+t—1)°

S(B3, x3) =

G(B3, X3) =

31/35



Three strand — Dual case
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Three strand — Dual case

L | s(B3,%5:0) | &(Bs3,%35:¢) L | (B3, 23:0) g(Bs3,%3:¢)
0 1 1 11 38910 6639 606
1 6 6 12 83966 26216418
2 20 30 13 180222 103827 366
3 b4 126 14 385022 412169970
4 134 498 15 819198 1639212246
5 318 1926 16 1736702 6528347778
6 734 7410 17 3670014 26 027 690 836
7 1662 28566 18 7733246 103853269 650
8 3710 110658 19 16252926 414639810486
9 8190 431 046 20 34078718 1656 237 864 738
10 17918 1687890 21 71303166 | 6617984181606
V.

e Conjecture :

S(Bs,T5) =

(t+1)(2t2 - 1) 1263 —2t2 4+ 3t —1

g(B3v z;) =

(t—1)(2t —1)*’ (2t —1)(3t—1)(4t — 1)
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Three strand — Dual case

L | s(B3,%5:0) | &(Bs3,%35:¢) L | (B3, 23:0) g(Bs3,%3:¢)
0 1 1 11 38910 6639 606
1 6 6 12 83966 26216418
2 20 30 13 180222 103827 366
3 b4 126 14 385022 412169970
4 134 498 15 819198 1639212246
5 318 1926 16 1736702 6528347778
6 734 7410 17 3670014 26 027 690 836
7 1662 28566 18 7733246 103853269 650
8 3710 110658 19 16252926 414639810486
9 8190 431 046 20 34078718 1656 237 864 738
10 17918 1687890 21 71303166 | 6617984181606
V.

e Conjecture :

S(Bs,T5) =

(t+1)(2t2 -1) 1263 - 262+ 3t — 1

g(B3v z;) =

(t—1)(2t —1)*’ (2t —1)(3t—1)(4t — 1)

» With growth rates of 2 and 4 respectively.
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Four strands - Artin case

33/35



Four strands - Artin case

L | s(BasXa; ) | g(BaXa;t) “ s(Bs, Z4;¢) g(Ba, X4;£)
0 1 1 13 9007 466 281799158
1 6 6 14 27218486 1153638466
2 26 30 15 82133734 4710108514
3 98 142 16 247 557 852 19186676438
4 338 646 17 745421 660 78004 083510
5) 1110 2870 18 2242595598 316591 341 866
6 3542 12558 19 6741618346 1283041428650
7 11098 54 026 20 20252254058 5193053 664 554
3 34362 229338 21 60800088 630 20994 893 965 398
9 105 546 963570 22 182422 321452 84795261 908 498
10 322400 4016674 23 547032 036 564 342173680884 002
11 980904 16 641454 24 | 1639548505920 | 1379691672165 334
12 2975728 68614 150 25 | 4911638066620 | 5559241797216 166
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1 6 6 14 27218486 1153638466
2 26 30 15 82133734 4710108514
3 98 142 16 247 557 852 19186676438
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» No good conjectures.
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» The storage of all braids of B, with geodesic ¥4-length < 25
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Four strands - Artin case

L | s(BasXa; ) | g(BaXa;t) “ s(Bs, Z4;¢) g(Ba, X4;£)
0 1 1 13 9007 466 281799158
1 6 6 14 27218486 1153638466
2 26 30 15 82133734 4710108514
3 98 142 16 247 557 852 19186676438
4 338 646 17 745421 660 78004 083510
5) 1110 2870 18 2242595598 316591 341 866
6 3542 12558 19 6741618346 1283041428650
7 11098 54 026 20 20252254058 5193053 664 554
3 34362 229338 21 60800088 630 20994 893 965 398
9 105 546 963570 22 182422 321452 84795261 908 498
10 322400 4016674 23 547032 036 564 342173680884 002
11 980904 16 641454 24 | 1639548505920 | 1379691672165 334
12 2975728 68614 150 25 | 4911638066620 | 5559241797216 166

» No good conjectures.
» The storage of all braids of B, with geodesic ¥4-length < 25
requires 26 To of disk space.
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Four strands — dual case
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Four strands — dual case

¢ | SBT3 | g(BaTiio) ¢ S(Ba,T5:0) g(Ba, T3 0)
0 1 1 9 7 348 366 708 368 540
1 12 12 10 35773324 6128211364
2 84 132 11 173885572 52826999612
3 478 1340 12 844277874 454136092 148
4 2500 12788 13 4095929948 3895 624 824 092
5 12612 117 452 14 19858981 932 33359143410468
6 62570 1053604 15 96 242 356 958 285259736104 444
7 303 356 9311420 16 466 262 144 180 2436488694 821748
8 1506212 81488628 17 | 2258320991652 | 20790986 096 580 060
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Four strands — dual case

L | s(Bs,X;;6) | g(Ba,X};0) 2 S(Bs, X} 0) g(Bs, X} 0)
0 1 1 9 7348 366 708 368 540
1 12 12 10 35773324 6128211364
2 84 132 11 173885572 52826999612
3 478 1340 12 844277874 454136092 148
4 2500 12788 13 4095929948 3895 624 824 092
5 12612 117 452 14 19858981932 33359143410468
6 62570 1053604 15 96 242 356 958 285259736 104 444
7 303356 9311420 16 466 262 144 180 2436488694 821748
8 1506212 81488628 17 | 2258320991652 | 20790986 096 580 060
W

e Conjecture :

S(BaT3) = —

(t +1)(10t° — 10t% — 3t* + 11¢3 — 4t — 3t + 1)

(t —1)(5t% — 5t + 1)(10t* — 203 + 192 — 8t + 1)
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Four strands — dual case

L | s(Bs,X;;6) | g(Ba,X};0) 2 S(Bs, X} 0) g(Bs, X} 0)
0 1 1 9 7348 366 708 368 540
1 12 12 10 35773324 6128211364
2 84 132 11 173885572 52826999612
3 478 1340 12 844277874 454136092 148
4 2500 12788 13 4095929948 3895 624 824 092
5 12612 117 452 14 19858981932 33359143410468
6 62570 1053604 15 96 242 356 958 285259736 104 444
7 303356 9311420 16 466 262 144 180 2436488694 821748
8 1506212 81488628 17 | 2258320991652 | 20790986 096 580 060

e Conjecture :

S(Ba,T3) =

(t +1)(10t° — 10t% — 3t* + 11¢3 — 4t — 3t + 1)

» The growth rate of S(By, X) is ~ 4.8.

(t —1)(5t% — 5t + 1)(10t* — 203 + 192 — 8t + 1)
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Four strands — dual case

L | s(Bs,X;;6) | g(Ba,X};0) 2 S(Bs, X} 0) g(Bs, X} 0)
0 1 1 9 7348 366 708 368 540
1 12 12 10 35773324 6128211364
2 84 132 11 173885572 52826999612
3 478 1340 12 844277874 454136092 148
4 2500 12788 13 4095929948 3895 624 824 092
5 12612 117 452 14 19858981932 33359143410468
6 62570 1053604 15 96 242 356 958 285259736 104 444
7 303356 9311420 16 466 262 144 180 2436488694 821748
8 1506212 81488628 17 | 2258320991652 | 20790986 096 580 060

e Conjecture :

S(Ba,T3) =

(t +1)(10t° — 10t% — 3t* + 11¢3 — 4t — 3t + 1)

» The growth rate of S(Bs, X;
» No good conjecture for G(Ba, X}).

) is ~ 4.8.

(t —1)(5t% — 5t + 1)(10t* — 203 + 192 — 8t + 1)
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