Experiments on growth series of braid groups

Jean Fromentin

Université du Littoral Calais, France

- Definitions :
 - the empty word is denoted by ε ;
 - a word on the alphabet S is an S-word;
 - the set of all S-words is denoted by S*;
 - for $u \in S^*$: |u| its length and \overline{u} the element of M it represents;
 - two *S*-words u and v are equivalent, denoted by $u \equiv v$, if they represent the same element in M, i.e., $\overline{u} = \overline{v}$.

- Definitions :
 - the empty word is denoted by ε ;
 - a word on the alphabet S is an S-word;
 - the set of all S-words is denoted by S*;
 - for $u \in S^*$: |u| its length and \overline{u} the element of M it represents;
 - two *S*-words u and v are equivalent, denoted by $u \equiv v$, if they represent the same element in M, i.e., $\overline{u} = \overline{v}$.
- Examples : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.

- Definitions :
 - the empty word is denoted by ε ;
 - a word on the alphabet S is an S-word;
 - the set of all S-words is denoted by S*;
 - for $u \in S^*$: |u| its length and \overline{u} the element of M it represents;
 - two *S*-words u and v are equivalent, denoted by $u \equiv v$, if they represent the same element in M, i.e., $\overline{u} = \overline{v}$.
- Examples : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.
 - $-\overline{aa}=(1\ 2)\circ(1\ 2)=\mathbf{1}_{\mathfrak{S}_3}=\overline{\varepsilon}$ and so $aa\equiv\varepsilon$ (and also $bb\equiv\varepsilon$).

Let S be a finite generating set of a semigroup M.

- Definitions :
 - the empty word is denoted by ε ;
 - a word on the alphabet S is an S-word;
 - the set of all S-words is denoted by S*;
 - for $u \in S^*$: |u| its length and \overline{u} the element of M it represents;
 - two *S*-words u and v are equivalent, denoted by $u \equiv v$, if they represent the same element in M, i.e., $\overline{u} = \overline{v}$.
- Examples : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.
 - $-\overline{aa}=(1\ 2)\circ(1\ 2)=\mathbf{1}_{\mathfrak{S}_3}=\overline{\varepsilon}$ and so $aa\equiv\varepsilon$ (and also $bb\equiv\varepsilon$).
 - $-\overline{aba} = (1\ 2) \circ (2\ 3) \circ (1\ 2) = (1\ 2) \circ (1\ 3\ 2) = (1\ 3),$

$$\overline{bab} = (2\ 3) \circ (1\ 2) \circ (2\ 3) = (2\ 3) \circ (1\ 2\ 3) = (1\ 3)$$

and so $aba \equiv bab$.

Let S be a finite generating set of a semigroup M.

• Definition : The S-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest S-word representing x.

- Definition : The *S*-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest *S*-word representing x.
 - ▶ $|x|_S$ corresponds to the distance from $\mathbf{1}_M$ to x in Cay(M, S).

- Definition : The *S*-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest *S*-word representing x.
 - ▶ $|x|_S$ corresponds to the distance from $\mathbf{1}_M$ to x in Cay(M, S).
- Definition : For any $\ell \in \mathbb{N}$, we put

$$s(M, S; \ell) = \text{card} (\{x \in M \text{ s.t. } |x|_S = \ell\}).$$

Let S be a finite generating set of a semigroup M.

- Definition : The *S*-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest *S*-word representing x.
 - ▶ $|x|_S$ corresponds to the distance from $\mathbf{1}_M$ to x in Cay(M, S).
- Definition : For any $\ell \in \mathbb{N}$, we put

$$s(M, S; \ell) = \operatorname{card} (\{x \in M \text{ s.t. } |x|_S = \ell\}).$$

The spherical growth series of M w.r.t. S is

$$S(M,S) = \sum_{x \in M} t^{|x|_S} = \sum_{\ell \in \mathbb{N}} s(M,S;\ell) t^{\ell}.$$

Let S be a finite generating set of a semigroup M.

- Definition : The *S*-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest *S*-word representing x.
 - ▶ $|x|_S$ corresponds to the distance from $\mathbf{1}_M$ to x in Cay(M, S).
- Definition : For any $\ell \in \mathbb{N}$, we put

$$s(M, S; \ell) = \operatorname{card} (\{x \in M \text{ s.t. } |x|_S = \ell\}).$$

The spherical growth series of M w.r.t. S is

$$S(M,S) = \sum_{x \in M} t^{|x|_S} = \sum_{\ell \in \mathbb{N}} s(M,S;\ell) t^{\ell}.$$

ightharpoonup card $(M) = \mathcal{S}(M, \mathcal{S})|_{t=1}$.

• Example : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.

• Example : $s(\mathfrak{S}_3,S,\ell) = \begin{cases} 1 & \text{if } \ell=0 \text{ or } \ell=3,\\ 2 & \text{if } \ell=1 \text{ or } \ell=2,\\ 0 & \text{if } \ell\geqslant 4. \end{cases}$

and so $S(\mathfrak{S}_3, S) = 1 + 2t + 2t^2 + t^3$.

Let S be a finite generating set of a semigroup M.

• Definition : An S-word u is said to be geodesic if $|u| = |\overline{u}|_S$ holds.

- Definition : An S-word u is said to be geodesic if $|u| = |\overline{u}|_S$ holds.
 - ▶ Geodesic S-words correspond to geodesic paths on Cay(M, S).

Let S be a finite generating set of a semigroup M.

- Definition : An S-word u is said to be geodesic if $|u| = |\overline{u}|_S$ holds.
 - ▶ Geodesic S-words correspond to geodesic paths on Cay(M, S).

• Definition : For any $\ell \in \mathbb{N}$, we put

$$g(M, S; \ell) = \operatorname{card} (\{u \in S^* \text{ s.t. } |u| = |\overline{u}|_S = \ell\}).$$

Let S be a finite generating set of a semigroup M.

- Definition : An S-word u is said to be geodesic if $|u| = |\overline{u}|_S$ holds.
 - ▶ Geodesic S-words correspond to geodesic paths on Cay(M, S).

• Definition : For any $\ell \in \mathbb{N}$, we put

$$g(M, S; \ell) = \operatorname{card} (\{u \in S^* \text{ s.t. } |u| = |\overline{u}|_S = \ell\}).$$

The geodesic growth series of M w.r.t. S is

$$\mathcal{G}(M,S) = \sum_{\substack{u \in S^* \ |u| = |\overline{u}|_S}} t^{|u|} = \sum_{\ell \in \mathbb{N}} g(M,S;\ell) t^{\ell}.$$

• Example : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.

Geodesic S-words are

• Example : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.

Geodesic S-words are

- **–** 8
- -a and b
- ab and ba
 - aba and bab

• Example : $M = (\mathfrak{S}_3, \circ)$, $a = (1 \ 2)$, $b = (2 \ 3)$ and $S = \{a, b\}$.

Geodesic S-words are

• Example :
$$g(\mathfrak{S}_3,S;\ell) = \begin{cases} 1 & \text{if } \ell=0\\ 2 & \text{if } \ell=1 \text{ or } \ell=2 \text{ or } \ell=3,\\ 0 & \text{if } \ell\geqslant 4. \end{cases}$$

and so $G(\mathfrak{S}_3, S) = 1 + 2t + 2t^2 + 2t^3$.

6/35

• Theorem (E. Artin 1925): The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

• Theorem (E. Artin 1925) : The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

• Definition : For all $n \geqslant 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$

• Theorem (E. Artin 1925): The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

- Definition : For all $n \geqslant 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$
 - ▶ As a group B_n is generated by Σ_n^+ .

• Theorem (E. Artin 1925) : The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \left| \begin{array}{cc} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

- Definition : For all $n \ge 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$
 - ▶ As a group B_n is generated by Σ_n^+ .
 - ▶ But, as a semigroup, it is generated by Σ_n with relations (1) together with $\sigma_i \, \sigma_i^{-1} \equiv \sigma_i \, \sigma_i^{-1} \equiv \varepsilon$ for all $i \in \{1, ..., n\}$.

• Theorem (E. Artin 1925): The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

- Definition : For all $n \ge 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$
 - ▶ As a group B_n is generated by Σ_n^+ .
 - ▶ But, as a semigroup, it is generated by Σ_n with relations (1) together with $\sigma_i \, \sigma_i^{-1} \equiv \sigma_i \, \sigma_i^{-1} \equiv \varepsilon$ for all $i \in \{1, ..., n\}$.
- Definition : B_n^+ is the submonoid of B_n generated by Σ_n^+ .

• Theorem (E. Artin 1925): The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

- Definition : For all $n \ge 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$
 - ▶ As a group B_n is generated by Σ_n^+ .
 - ▶ But, as a semigroup, it is generated by Σ_n with relations (1) together with $\sigma_i \sigma_i^{-1} \equiv \sigma_i \sigma_i^{-1} \equiv \varepsilon$ for all $i \in \{1, ..., n\}$.
- Definition : B_n^+ is the submonoid of B_n generated by Σ_n^+ .
 - ▶ B_n is the group of fractions of B_n^+ .

• Theorem (E. Artin 1925) : The braid group B_n is presented by

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j \equiv \sigma_j \sigma_i & \text{for } |i-j| \geqslant 2 \\ \sigma_i \sigma_j \sigma_i \equiv \sigma_j \sigma_i \sigma_j & \text{for } |i-j| = 1 \end{array} \right\rangle$$
 (1)

- Definition : For all $n \ge 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \sqcup (\Sigma_n^+)^{-1} = \{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}.$
 - ▶ As a group B_n is generated by Σ_n^+ .
 - ▶ But, as a semigroup, it is generated by Σ_n with relations (1) together with $\sigma_i \sigma_i^{-1} \equiv \sigma_i \sigma_i^{-1} \equiv \varepsilon$ for all $i \in \{1, ..., n\}$.
- Definition : B_n^+ is the submonoid of B_n generated by Σ_n^+ .
 - ▶ B_n is the group of fractions of B_n^+ .
 - ▶ As a semigroup B_n^+ is presented by (1).

• Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t - 1)(t^2 + t - 1)}.$

• Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t - 1)(t^2 + t - 1)}.$

▶ Construction of an explicit deterministic finite states automaton.

- Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t 1)(t^2 + t 1)}.$
 - ► Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$\mathcal{S}(B_3,\Sigma_3) = rac{(t+1)(2t^3-t^2+t-1)}{(t-1)(2t-1)(t^2+t-1)}.$$

- Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t 1)(t^2 + t 1)}.$
 - ► Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$\mathcal{S}(B_3,\Sigma_3) = rac{(t+1)(2t^3-t^2+t-1)}{(t-1)(2t-1)(t^2+t-1)}.$$

• In her PhD, M. Albenque computes the first 13 terms of $s(B_4, \Sigma_4; \ell)$.

- Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t 1)(t^2 + t 1)}.$
 - ► Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$\mathcal{S}(B_3,\Sigma_3) = rac{(t+1)(2t^3-t^2+t-1)}{(t-1)(2t-1)(t^2+t-1)}.$$

- In her PhD, M. Albenque computes the first 13 terms of $s(B_4, \Sigma_4; \ell)$.
 - ► She obtains $s(B_4, \Sigma_4; 12) = 2975728$.

- Theorem (L. Sabalka 2004) : $\mathcal{G}(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t 1)(t^2 + t 1)}.$
 - ▶ Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$\mathcal{S}(B_3,\Sigma_3) = rac{(t+1)(2t^3-t^2+t-1)}{(t-1)(2t-1)(t^2+t-1)}.$$

- In her PhD, M. Albenque computes the first 13 terms of $s(B_4, \Sigma_4; \ell)$.
 - ► She obtains $s(B_4, \Sigma_4; 12) = 2975728$.
- Open question: Do $\mathcal{G}(B_n, \Sigma_n)$ and $\mathcal{S}(B_n, \Sigma_n)$ are rationals for $n \ge 4$?

ullet Fact : As every Σ_n^+ -word is geodesic, $\mathcal{G}(B_n^+,\Sigma_n^+)$ is irrelevant.

- Fact : As every Σ_n^+ -word is geodesic, $\mathcal{G}(B_n^+, \Sigma_n^+)$ is irrelevant.
- Theorem (A. Bronfman 2001): We have

$$\mathcal{S}(\mathcal{B}_n^+, \Sigma_n^+) = rac{1}{P_n(t)}$$

where $P_n(t)$ is given by

$$P_n(t) = \sum_{i=1}^n (-1)^{i+1} t^{\frac{i(i-1)}{2}} P_{n-i}(t)$$

with
$$P_0(t) = P_1(t) = 1$$
.

• Fact : As every Σ_n^+ -word is geodesic, $\mathcal{G}(B_n^+, \Sigma_n^+)$ is irrelevant.

• Theorem (A. Bronfman 2001): We have

$$\mathcal{S}(B_n^+, \Sigma_n^+) = rac{1}{P_n(t)}$$

where $P_n(t)$ is given by

$$P_n(t) = \sum_{i=1}^n (-1)^{i+1} t^{\frac{i(i-1)}{2}} P_{n-i}(t)$$

with
$$P_0(t) = P_1(t) = 1$$
.

► Generalized to positive braid semigroups of types *B* and *D* by M. Albenque and P. Nadeau in 2009 using Viennot's heap of pieces.

- Fact : As every Σ_n^+ -word is geodesic, $\mathcal{G}(B_n^+, \Sigma_n^+)$ is irrelevant.
- Theorem (A. Bronfman 2001): We have

$$\mathcal{S}(B_n^+, \Sigma_n^+) = \frac{1}{P_n(t)}$$

where $P_n(t)$ is given by

$$P_n(t) = \sum_{i=1}^n (-1)^{i+1} t^{\frac{i(i-1)}{2}} P_{n-i}(t)$$

with
$$P_0(t) = P_1(t) = 1$$
.

- ► Generalized to positive braid semigroups of types *B* and *D* by M. Albenque and P. Nadeau in 2009 using Viennot's heap of pieces.
- ► And for all spherical Artin—Tits semigroups by R. Flores and J. González-Meneses in 2018.

ullet Definition : For $1\leqslant p\leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

ullet Definition : For $1\leqslant p\leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

$$a_{1,4} =$$

ullet Definition : For $1\leqslant p\leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

$$a_{1,4} =$$

ullet Definition : For $1\leqslant p\leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

$$a_{1,4} = \frac{4}{1}$$
 \approx \times \leftrightarrow

• Definition : For $1\leqslant p\leqslant q$ we put $a_{p,q}=\sigma_p\dots\sigma_{q-2}\ \sigma_{q-1}\ \sigma_{q-2}^{-1}\dots\sigma_p^{-1}.$

• Definition : For $1 \leqslant p \leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

• Example :

• Definition : For all $n \ge 2$, we put

$$\Sigma_n^{+*} = \{a_{p,q} \mid 1 \leqslant p < q \leqslant n\}$$

and
$$\Sigma_n^* = \Sigma_n^{+*} \sqcup (\Sigma_n^{+*})^{-1}$$
.

ullet Definition : For $1\leqslant p\leqslant q$ we put

$$a_{p,q} = \sigma_p \dots \sigma_{q-2} \ \sigma_{q-1} \ \sigma_{q-2}^{-1} \dots \sigma_p^{-1}.$$

• Example :

• Definition : For all $n \ge 2$, we put

$$\sum_{n}^{+*} = \{a_{p,q} \mid 1 \leqslant p < q \leqslant n\}$$

and
$$\Sigma_n^* = \Sigma_n^{+*} \sqcup (\Sigma_n^{+*})^{-1}$$
.

▶ As a semigroup, B_n is generated by Σ_n^* .

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested,

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested,
 $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \le p < q < r \le n$.

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \le p < q < r \le n$.

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \leqslant p < q < r \leqslant n$.

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \leqslant p < q < r \leqslant n$.

• Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of Σ_n^{+*} , the group B_n is presented by the relations

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \leqslant p < q < r \leqslant n$.

$$\begin{bmatrix} 1 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

• Definition: We denote by B_n^{+*} the submonoid of B_n generated by Σ_n^{+*} .

$$a_{p,q}a_{r,s} \equiv a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, $a_{p,q}a_{q,r} \equiv a_{q,r}a_{p,r} \equiv a_{p,r}a_{p,q}$ for $1 \leqslant p < q < r \leqslant n$.

$$\begin{bmatrix} 1 & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- Definition : We denote by B_n^{+*} the submonoid of B_n generated by Σ_n^{+*} .
 - ▶ The group of fractions of B_n^{+*} is also B_n .

$$\mathcal{S}(\mathcal{B}_n^{+*}, \Sigma_n^{+*}) = \left[\sum_{k=0}^{n-1} rac{(n-1+k)!(-t)^k}{(n-1-k)!k!(k+1)!}
ight]^{-1}$$

• Theorem (M. Albenque, P. Nadeau 2009) :

$$\mathcal{S}(\mathcal{B}_n^{+*}, \Sigma_n^{+*}) = \left[\sum_{k=0}^{n-1} rac{(n-1+k)!(-t)^k}{(n-1-k)!k!(k+1)!}
ight]^{-1}$$

 $ightharpoonup \mathcal{G}(B_n^{+*}, \Sigma_n^{+*})$ is irrelevant as every Σ_n^{+*} -word is geodesic.

$$\mathcal{S}(B_n^{+*}, \Sigma_n^{+*}) = \left[\sum_{k=0}^{n-1} rac{(n-1+k)!(-t)^k}{(n-1-k)!k!(k+1)!}
ight]^{-1}$$

- $ightharpoonup \mathcal{G}(B_n^{+*}, \Sigma_n^{+*})$ is irrelevant as every Σ_n^{+*} -word is geodesic.
- ▶ They obtain similar results for dual braid monoids of type B and D.

$$\mathcal{S}(\mathcal{B}_n^{+*}, \Sigma_n^{+*}) = \left[\sum_{k=0}^{n-1} rac{(n-1+k)!(-t)^k}{(n-1-k)!k!(k+1)!}
ight]^{-1}$$

- $ightharpoonup \mathcal{G}(B_n^{+*}, \Sigma_n^{+*})$ is irrelevant as every Σ_n^{+*} -word is geodesic.
- ▶ They obtain similar results for dual braid monoids of type B and D.
- Except for n=2, which is obvious, I can't found any result on $\mathcal{S}(B_n, \Sigma_n^*)$ or $\mathcal{G}(B_n, \Sigma_n^*)$ in the litterature.

$$\mathcal{S}(B_n^{+*}, \Sigma_n^{+*}) = \left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^k}{(n-1-k)!k!(k+1)!}\right]^{-1}$$

- ▶ $\mathcal{G}(B_n^{+*}, \Sigma_n^{+*})$ is irrelevant as every Σ_n^{+*} -word is geodesic.
- ▶ They obtain similar results for dual braid monoids of type B and D.
- Except for n=2, which is obvious, I can't found any result on $\mathcal{S}(B_n, \Sigma_n^*)$ or $\mathcal{G}(B_n, \Sigma_n^*)$ in the litterature.

$$\begin{array}{l} \bullet \ \ \mathsf{Fact} : \mathsf{We have} \ \Sigma_2^* = \Sigma_2^+ = \{\sigma_1^{\pm 1}\} \ \mathsf{and} \\ \mathcal{S}\big(B_2, \{\sigma_1^{\pm 1}\}\big) = \mathcal{G}\big(B_2, \{\sigma_1^{\pm 1}\}\big) = \mathcal{G}\big(\mathbb{Z}, \{\pm 1\}\big) = \frac{1+t}{1-t}. \end{array}$$

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

$$-s(B_n, S_n; \ell) = \operatorname{card} (\{\beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell\}),$$

$$-g(B_n, S_n; \ell) = \operatorname{card}(\{u \in S_n^* \text{ s.t. } |u| = |\overline{u}|_{S_n} = \ell\}).$$

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

• Construct an algorithmic framework for computing

$$\begin{split} &-s(B_n,S_n;\ell)=\operatorname{card}\big(\{\beta\in B_n \text{ s.t. } |\beta|_{S_n}=\ell\}\big),\\ &-g(B_n,S_n;\ell)=\operatorname{card}\big(\{u\in S_n^* \text{ s.t. } |u|=|\overline{u}|_{S_n}=\ell\}\big). \end{split}$$

▶ Efficient as possible, in particular in the case of $n \leq 4$.

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

$$\begin{aligned} &-s(B_n,S_n;\ell)=\operatorname{card}\big(\{\beta\in B_n \text{ s.t. } |\beta|_{S_n}=\ell\}\big),\\ &-g(B_n,S_n;\ell)=\operatorname{card}\big(\{u\in S_n^* \text{ s.t. } |u|=|\overline{u}|_{S_n}=\ell\}\big). \end{aligned}$$

- ▶ Efficient as possible, in particular in the case of $n \leq 4$.
- ▶ Here we focus on $s(B_n, S_n; \ell)$.

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

$$-s(B_n, S_n; \ell) = \operatorname{card} (\{\beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell\}),$$

$$-g(B_n, S_n; \ell) = \operatorname{card} (\{u \in S_n^* \text{ s.t. } |u| = |\overline{u}|_{S_n} = \ell\}).$$

- ▶ Efficient as possible, in particular in the case of $n \leq 4$.
- ▶ Here we focus on $s(B_n, S_n; \ell)$.
- Compute as many terms as possible of $s(B_n, S_n; \ell)$ and $g(B_n, S_n; \ell)$ with n = 4 for $S_n = \Sigma_n$ and n = 3, 4 for $S_n = \Sigma_n^*$.

For the sequel, S_n will denotes either Σ_n or Σ_n^* .

$$-s(B_n, S_n; \ell) = \operatorname{card} (\{\beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell\}),$$

$$-g(B_n, S_n; \ell) = \operatorname{card} (\{u \in S_n^* \text{ s.t. } |u| = |\overline{u}|_{S_n} = \ell\}).$$

- ▶ Efficient as possible, in particular in the case of $n \leq 4$.
- ▶ Here we focus on $s(B_n, S_n; \ell)$.
- Compute as many terms as possible of $s(B_n, S_n; \ell)$ and $g(B_n, S_n; \ell)$ with n = 4 for $S_n = \Sigma_n$ and n = 3, 4 for $S_n = \Sigma_n^*$.
- Try to guess rational values for
 - $-\mathcal{S}(B_4,\Sigma_4)$ and $\mathcal{G}(B_4,\Sigma_4)$,
 - $-\mathcal{S}(B_3,\Sigma_3^*)$ and $\mathcal{G}(B_4,\Sigma_3^*)$,
 - $-\mathcal{S}(B_4, \Sigma_4^*)$ and $\mathcal{G}(B_4, \Sigma_4^*)$.

 S_n denotes either Σ_n or Σ_n^* .

• Definition : $B_n(S_n; \ell) = \{\beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell\}.$

- Definition : $B_n(S_n; \ell) = \{\beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell\}.$

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(B_n(S_n; \ell)).$
- Definition: A set W of S_n-words represents a subset X of B_n, denoted W ⊢ X, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
- Definition: A set W of S_n-words represents a subset X of B_n, denoted W ⊢ X, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.
 - ▶ For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_n(S_n; \ell)$.

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
- Definition: A set W of S_n-words represents a subset X of B_n, denoted W ⊢ X, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.
 - ▶ For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_n(S_n; \ell)$.
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(W_\ell).$

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
- Definition : A set W of S_n -words represents a subset X of B_n , denoted $W \vdash X$, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.
 - ▶ For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_n(S_n; \ell)$.
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(W_\ell).$
- Examples : We have $B_n(S_n; 0) = \{1\}$ and so $\{\varepsilon\} \vdash B_n(S_n; 0)$. With a little more work we obtain $S_n \vdash B_n(S_n; 1)$.

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(B_n(S_n; \ell)).$
- Definition : A set W of S_n -words represents a subset X of B_n , denoted $W \vdash X$, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.
 - ▶ For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_n(S_n; \ell)$.
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(W_\ell).$
- Examples : We have $B_n(S_n; 0) = \{1\}$ and so $\{\varepsilon\} \vdash B_n(S_n; 0)$. With a little more work we obtain $S_n \vdash B_n(S_n; 1)$.
- Question: How to determine if a given S_n -word u is geodesic?

- Definition : $B_n(S_n; \ell) = \{ \beta \in B_n \text{ s.t. } |\beta|_{S_n} = \ell \}.$
- Definition : A set W of S_n -words represents a subset X of B_n , denoted $W \vdash X$, whenever
 - words occurring in W are geodesics;
 - each braid of X has a unique representative in W.
 - ▶ For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_n(S_n; \ell)$.
 - $ightharpoonup s(B_n, S_n; \ell) = \operatorname{card}(W_\ell).$
- Examples: We have $B_n(S_n; 0) = \{1\}$ and so $\{\varepsilon\} \vdash B_n(S_n; 0)$. With a little more work we obtain $S_n \vdash B_n(S_n; 1)$.
- Question: How to determine if a given S_n -word u is geodesic?
 - ▶ No good algorithms.

Assume $\ell \geqslant 2$.

• Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_n(S_n; \ell)$.

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_n(S_n; \ell)$.

 Assume we have constructed:

$$W_{\ell-2} \vdash B_n(S_n; \ell-2)$$
 and $W_{\ell-1} \vdash B_n(S_n; \ell-1)$.

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_n(S_n; \ell)$.

 Assume we have constructed:

$$W_{\ell-2} \vdash B_n(S_n; \ell-2)$$
 and $W_{\ell-1} \vdash B_n(S_n; \ell-1)$.

$$-W_{\ell}^{"}=\{u\,\alpha\,\,\text{for}\,\,(u,\alpha)\in W_{\ell-1}\times S_n\},\,$$

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_n(S_n; \ell)$. Assume we have constructed:

$$W_{\ell-2} \vdash B_n(S_n; \ell-2)$$
 and $W_{\ell-1} \vdash B_n(S_n; \ell-1)$.

- $-W_{\ell}^{"}=\{u\,\alpha\,\,\text{for}\,\,(u,\alpha)\in W_{\ell-1}\times S_n\},\,$
- W'_{ℓ} by keeping words u of W''_{ℓ} that do not appear in $W_{\ell-2}$,

Assume $\ell \geqslant 2$.

- Lemma : Let u be a geodesic S_n -word of length $\ell-1$ and $\alpha \in S_n$. If the word u α is not geodesic, then there exists a geodesic S_n -word w of length $\ell-2$ satisfying $w \equiv u$ α .
- Definition: We say that an S_n -word u appears in a subset W of S_n^* whenever u is equivalent to a word of W, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_n(S_n; \ell)$. Assume we have constructed:

$$W_{\ell-2} \vdash B_n(S_n; \ell-2) \text{ and } W_{\ell-1} \vdash B_n(S_n; \ell-1).$$

- $-W_{\ell}^{\prime\prime} = \{u \alpha \text{ for } (u, \alpha) \in W_{\ell-1} \times S_n\},\$
- W'_{ℓ} by keeping words u of W''_{ℓ} that do not appear in $W_{\ell-2}$,
- W_{ℓ} from W'_{ℓ} by keeping only one word in each ≡-classes.

A first algorithm

```
• Algorithm (W_{\ell-2} \vdash B_n(S_n; \ell-2), \ W_{\ell-1} \vdash B_n(S_n; \ell-1)): for u \in W_{\ell-1} do for \alpha \in S_n do v \leftarrow u \alpha if v \not \lhd W_{\ell-2} and v \not \lhd W_{\ell} then W_{\ell} \leftarrow W_{\ell} \sqcup \{v\} A new braid \overline{v} of B_n(S_n; \ell) is found. end if end for end for return W_{\ell}
```

A first algorithm

```
• Algorithm (W_{\ell-2} \vdash B_n(S_n; \ell-2), \ W_{\ell-1} \vdash B_n(S_n; \ell-1)): for u \in W_{\ell-1} do for \alpha \in S_n do v \leftarrow u \alpha if v \not \lhd W_{\ell-2} and v \not \lhd W_{\ell} then W_{\ell} \leftarrow W_{\ell} \sqcup \{v\} A new braid \overline{v} of B_n(S_n; \ell) is found. end if end for end for return W_{\ell}
```

• Question: How to test if a S_n -word u appears in a subset W of S_n^* ?

ullet A S_n -word u is naturally represented as an array of size |u|.

• A S_n -word u is naturally represented as an array of size |u|.

• A S_n -word u is naturally represented as an array of size |u|.

Les W be a finite subset of S_n^* and u be a S_n -word. Does u appear in W?

• A first idea: Representing W by an array and use Garside normal form to detect equivalences.

• A S_n -word u is naturally represented as an array of size |u|.

- A first idea: Representing W by an array and use Garside normal form to detect equivalences.
 - ▶ $u \triangleleft W$ requires at most O(|W|) test of equivalence \equiv ,

• A S_n -word u is naturally represented as an array of size |u|.

- A first idea: Representing W by an array and use Garside normal form to detect equivalences.
 - ▶ $u \triangleleft W$ requires at most O(|W|) test of equivalence \equiv ,
 - ▶ Garside normal form does not preserve geodesic words.

• A S_n -word u is naturally represented as an array of size |u|.

- A first idea: Representing W by an array and use Garside normal form to detect equivalences.
 - ▶ $u \triangleleft W$ requires at most O(|W|) test of equivalence \equiv ,
 - ▶ Garside normal form does not preserve geodesic words.
- A second idea: Representing W by an ordered array using braid ordering introduced by P. Dehornoy.

• A S_n -word u is naturally represented as an array of size |u|.

- A first idea: Representing W by an array and use Garside normal form to detect equivalences.
 - ▶ $u \triangleleft W$ requires at most O(|W|) test of equivalence \equiv ,
 - ▶ Garside normal form does not preserve geodesic words.
- A second idea: Representing W by an ordered array using braid ordering introduced by P. Dehornoy.
 - ▶ $u \triangleleft W$ requires at most $O(\log(|W|))$ comparisons.

• A S_n -word u is naturally represented as an array of size |u|.

- A first idea: Representing W by an array and use Garside normal form to detect equivalences.
 - ▶ $u \triangleleft W$ requires at most O(|W|) test of equivalence \equiv ,
 - ▶ Garside normal form does not preserve geodesic words.
- A second idea: Representing W by an ordered array using braid ordering introduced by P. Dehornoy.
 - ▶ $u \triangleleft W$ requires at most $O(\log(|W|))$ comparisons.
 - ▶ Better but we can do more in this direction.

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

• Assume we have a map $h: S_n^* \to \mathbb{N}$ s.t. h(u) = h(v) whenever $u \equiv v$. We can then represent a subset W of S_n^* using a hash table:

▶ In average case, insertion has a constant time complexity and a linear one in worst case.

• Definition : For $u \in S_n^*$, we put $\rho_D(u) = (x_1, y_1, \dots, x_n, y_n) \in \mathbb{Z}^{2n}$.

Dynnikov's coordinates

- Definition : For $u \in S_n^*$, we put $\rho_D(u) = (x_1, y_1, \dots, x_n, y_n) \in \mathbb{Z}^{2n}$.
- Examples : $\rho_D(1) = (0, 1, 0, 1, 0, 1)$ and $\rho_D(\sigma_1) = (1, 0, 0, 2, 0, 1)$.

• Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.
- Theorem (I. Dynnikov 2002) For two S_n words u and v, we have $\rho_D(u) = \rho_D(v) \Leftrightarrow u \equiv v$

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.
- Theorem (I. Dynnikov 2002) For two S_n words u and v, we have $\rho_D(u) = \rho_D(v) \Leftrightarrow u \equiv v$ and Dehornoy ordering relation $\overline{u} < \overline{v}$ can be read on $\rho_D(u^{-1}v)$.

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.
- Theorem (I. Dynnikov 2002) For two S_n words u and v, we have $\rho_D(u) = \rho_D(v) \Leftrightarrow u \equiv v$ and Dehornoy ordering relation $\overline{u} < \overline{v}$ can be read on $\rho_D(u^{-1}v)$.
- Definition : For $u \in S_4^*$ we define

$$h(u) = \sum_{i=0}^{t} \text{rem}(c_i, 256) \ 256^i$$

where $(c_0, \ldots, c_7) = \rho_D(u)$ and rem (c, 256) is the reminder of $a \div 256$.

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.
- Theorem (I. Dynnikov 2002) For two S_n words u and v, we have $\rho_D(u) = \rho_D(v) \Leftrightarrow u \equiv v$ and Dehornov ordering relation $\overline{u} < \overline{v}$ can be read on $\rho_D(u^{-1}v)$.
- Definition : For $u \in S_4^*$ we define

$$h(u) = \sum_{i=0}^{t} \text{rem}(c_i, 256) \ 256^i$$

where $(c_0, \ldots, c_7) = \rho_D(u)$ and rem (c, 256) is the reminder of $a \div 256$.

▶ h(u) is an integer of $[0, 2^{64} - 1]$,

- Fact : Dynnikov's coordinates $\rho_D(u)$ can be easily computed.
 - ▶ At most O(|u|) elementary op. in the semiring $(\mathbb{Z} \cup \{+\infty\}, \max, +)$.
- Theorem (I. Dynnikov 2002) For two S_n words u and v, we have $\rho_D(u) = \rho_D(v) \Leftrightarrow u \equiv v$ and Dehornov ordering relation $\overline{u} < \overline{v}$ can be read on $\rho_D(u^{-1}v)$.
- Definition : For $u \in S_4^*$ we define

$$h(u) = \sum_{i=0}^{r} \text{rem}(c_i, 256) \ 256^i$$

where $(c_0, \ldots, c_7) = \rho_D(u)$ and rem (c, 256) is the reminder of $a \div 256$.

- ▶ h(u) is an integer of $[0, 2^{64} 1]$,
 - ▶ well-suited for 64-bits computers.

$$- W_{\ell-1} \vdash B_n(S_n; \ell-1),$$

$$-W_{\ell-2}\vdash B_n(S_n;\ell-2).$$

• Fact : With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_n(S_n; \ell)$ requires to have two sets loaded in memory :

$$-W_{\ell-1}\vdash B_n(S_n;\ell-1),$$

$$-W_{\ell-2}\vdash B_n(S_n;\ell-2).$$

▶ As RAM capacity is not so big (some Go), we have a problem.

$$-W_{\ell-1}\vdash B_n(S_n;\ell-1),$$

$$-W_{\ell-2}\vdash B_n(S_n;\ell-2).$$

- ▶ As RAM capacity is not so big (some Go), we have a problem.
 - ▶ Massive use of swap memory, which impact performences.

$$-W_{\ell-1}\vdash B_n(S_n;\ell-1),$$

$$-W_{\ell-2}\vdash B_n(S_n;\ell-2).$$

- ▶ As RAM capacity is not so big (some Go), we have a problem.
 - ▶ Massive use of swap memory, which impact performences.
- Idea : Divides $B_n(S_n; \ell)$ on many independent pieces.

$$-W_{\ell-1}\vdash B_n(S_n;\ell-1),$$

$$-W_{\ell-2}\vdash B_n(S_n;\ell-2).$$

- ▶ As RAM capacity is not so big (some Go), we have a problem.
 - ▶ Massive use of swap memory, which impact performences.
- Idea : Divides $B_n(S_n; \ell)$ on many independent pieces.
 - ▶ Reduce RAM consumption.

$$-W_{\ell-1}\vdash B_n(S_n;\ell-1),$$

$$-W_{\ell-2} \vdash B_n(S_n; \ell-2).$$

- ▶ As RAM capacity is not so big (some Go), we have a problem.
 - ▶ Massive use of swap memory, which impact performences.
- Idea : Divides $B_n(S_n; \ell)$ on many independant pieces.
 - ▶ Reduce RAM consumption.
 - ► Allow parallelization.

• Definition : $\pi: B_n \to \mathfrak{S}_n$ is the morphism defined by $\pi(\sigma_i) = (i \ i+1)$.

- Definition : $\pi: B_n \to \mathfrak{S}_n$ is the morphism defined by $\pi(\sigma_i) = (i \ i+1)$.
 - ▶ $\pi(\beta)$ is the permutation of \mathfrak{S}_n such that the strand ending at position i starts at position $\pi(\beta)(i)$.

- Definition : $\pi: B_n \to \mathfrak{S}_n$ is the morphism defined by $\pi(\sigma_i) = (i \ i+1)$.
 - ▶ $\pi(\beta)$ is the permutation of \mathfrak{S}_n such that the strand ending at position i starts at position $\pi(\beta)(i)$.
- Example : $\beta = \sigma_1 \sigma_2^{-1} \sigma_1 \sigma_2$,

- Definition : $\pi: B_n \to \mathfrak{S}_n$ is the morphism defined by $\pi(\sigma_i) = (i \ i+1)$.
 - $\blacktriangleright \pi(\beta)$ is the permutation of \mathfrak{S}_n such that the strand ending at position i starts at position $\pi(\beta)(i)$.

• Example :
$$\beta = \sigma_1 \sigma_2^{-1} \sigma_1 \sigma_2$$
, $\pi(\beta) = (1\ 2)(2\ 3)(1\ 2)(2\ 3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

- Definition : $\pi: B_n \to \mathfrak{S}_n$ is the morphism defined by $\pi(\sigma_i) = (i \ i+1)$.
 - ▶ $\pi(\beta)$ is the permutation of \mathfrak{S}_n such that the strand ending at position i starts at position $\pi(\beta)(i)$.

• Example :
$$\beta = \sigma_1 \sigma_2^{-1} \sigma_1 \sigma_2$$
, $\pi(\beta) = (1\ 2)\ (2\ 3)\ (1\ 2)\ (2\ 3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
$$\frac{\pi(\beta)(1) = 3}{\pi(\beta)(3) = 2}$$

$$\frac{3}{\pi(\beta)(2) = 1}$$

• Definition: Let $\beta \in B_n$ and $i, j \in \{1, ..., n\}$ with $i \neq j$. The linking number $\ell_{i,j}(\beta)$ is the algebraic number of crossings involving the strands i and j in β .

Definition: Let β∈ B_n and i, j∈ {1,...,n} with i ≠ j.
 The linking number ℓ_{i,j}(β) is the algebraic number of crossings involving the strands i and j in β.

• Example :

$$\ell_{1,2} = 2$$
 $\ell_{1,3} = -1$
 $\ell_{1,3} = 1$

• Definition : Let $\beta \in B_n$ and $i,j \in \{1,\ldots,n\}$ with $i \neq j$. The linking number $\ell_{i,j}(\beta)$ is the algebraic number of crossings involving the strands i and j in β .

• Example :

$$\ell_{1,2} = 2$$

$$\ell_{1,3}=-1$$

$$\ell_{1,3}=1$$

ullet Lemma : For eta, γ in B_n and $1 \leqslant i < j \leqslant n$ we have

$$\ell_{i,j}(\beta \cdot \gamma) = \ell_{i,j}(\beta) + \ell_{\pi(\beta)^{-1}(i),\pi(\beta)^{-1}(j)}(\gamma),$$

with the convention $\overline{\ell_{p,q}} = \ell_{q,p}$ for p > q.

• Definition : Let $\beta \in B_n$ and $i,j \in \{1,\ldots,n\}$ with $i \neq j$. The linking number $\ell_{i,j}(\beta)$ is the algebraic number of crossings involving the strands i and j in β .

• Example :

$$\ell_{1,2} = 2$$

$$\ell_{1,3} = -1$$

$$\ell_{1,3}=1$$

- Lemma : For β , γ in B_n and $1 \leqslant i < j \leqslant n$ we have $\ell_{i,j}(\beta \cdot \gamma) = \ell_{i,j}(\beta) + \ell_{\pi(\beta)^{-1}(i),\pi(\beta)^{-1}(j)}(\gamma),$ with the convention $\ell_{p,q} = \ell_{q,p}$ for p > q.
- Corollary : For $\alpha \in S_n$, $\ell_{i,j}(\beta \cdot \alpha)$ depends only of $\ell_{*,*}(\beta)$ and $\pi(\beta)$.

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

For $\ell \in \mathbb{N}$, we put $T_n(S_n; \ell) = \tau(B_n(S_n; \ell))$.

▶ $u \equiv v$ implies $\tau(\overline{u}) = \tau(\overline{v})$.

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

- ▶ $u \equiv v$ implies $\tau(\overline{u}) = \tau(\overline{v})$.
- Fact : For $\beta \in B_n$ and $\alpha \in S_n$, the template $\tau(\beta) \odot \alpha = \tau(\beta \alpha)$ depends only of $\tau(\beta)$ and α .

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

- ▶ $u \equiv v$ implies $\tau(\overline{u}) = \tau(\overline{v})$.
- Fact : For $\beta \in B_n$ and $\alpha \in S_n$, the template $\tau(\beta) \odot \alpha = \tau(\beta \alpha)$ depends only of $\tau(\beta)$ and α .
- Definition : For $t \in T_n(S_n; \ell)$ we write

$$B_n(S_n; \ell, t) = \{\beta \in B_n(S_n; \ell) \text{ s.t. } \tau(\beta) = t\}.$$

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

- ▶ $u \equiv v$ implies $\tau(\overline{u}) = \tau(\overline{v})$.
- Fact : For $\beta \in B_n$ and $\alpha \in S_n$, the template $\tau(\beta) \odot \alpha = \tau(\beta \alpha)$ depends only of $\tau(\beta)$ and α .
- Definition : For $t \in T_n(S_n; \ell)$ we write $B_n(S_n; \ell, t) = \{\beta \in B_n(S_n; \ell) \text{ s.t. } \tau(\beta) = t\}.$
 - ▶ The sets $B_n(S_n; \ell, t)$ provide a partition of $B_n(S_n; \ell)$.

• Definition : The template of $\beta \in B_n$ is

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \dots, \ell_{n-1,n}(\beta)) \in \mathfrak{S}_n \times \mathbb{Z}^{\frac{n(n+1)}{2}}$$

- ▶ $u \equiv v$ implies $\tau(\overline{u}) = \tau(\overline{v})$.
- Fact : For $\beta \in B_n$ and $\alpha \in S_n$, the template $\tau(\beta) \odot \alpha = \tau(\beta \alpha)$ depends only of $\tau(\beta)$ and α .
- Definition : For $t \in T_n(S_n; \ell)$ we write $B_n(S_n; \ell, t) = \{\beta \in B_n(S_n; \ell) \text{ s.t. } \tau(\beta) = t\}.$
 - ▶ The sets $B_n(S_n; \ell, t)$ provide a partition of $B_n(S_n; \ell)$.
- Fact :

$$B_n(S_n; \ell, t) = \bigcup_{\alpha \in S_n} \{\beta \cdot \alpha \text{ with } \beta \in B_n(S_n; \ell - 1, t \odot \alpha^{-1})\}$$

• Assume we have stored a representative sets of $B_n(S_n; \ell', t')$ for all $\ell' \leq \ell$ and all template $t' \in T_n(S_n; \ell')$.

- Assume we have stored a representative sets of $B_n(S_n; \ell', t')$ for all $\ell' \leq \ell$ and all template $t' \in T_n(S_n; \ell')$.
 - ▶ On a hard disk typically.

- Assume we have stored a representative sets of $B_n(S_n; \ell', t')$ for all $\ell' \leq \ell$ and all template $t' \in T_n(S_n; \ell')$.
 - ▶ On a hard disk typically.

```
• Algorithm (Storing a representative set of B_n(S_n, \ell, t)):
    W_{\ell,t} \leftarrow \emptyset
    W_{\ell-2,t} \leftarrow \text{Load}(\ell-2,t)
    for \alpha \in S_n do
        t' \leftarrow t \odot \alpha^{-1}
        W_{\ell-1,t'} \leftarrow \text{Load}(\ell-1,t')
        for u \in W_{\ell-1,t'} do
            V \leftarrow \mu \alpha
            if v \not \triangleleft W_{\ell-2,t} and v \not \triangleleft W_{\ell,t} then
                W_{\ell} \leftarrow W_{\ell} \perp \sqcup \{v\}
            end if
        end for
    end for
    Save(W_{\ell,t},\ell,t)
```

Stable bijection

- Definition : A bijection μ of S_n^* is S_n -stable whenever :
 - μ preserves the word length,
 - for all u, v in S_n^* we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
 - for all $u \in S_n^*$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\overline{u})$

Stable bijection

- Definition : A bijection μ of S_n^* is S_n -stable whenever :
 - $-\mu$ preserves the word length,
 - for all u, v in S_n^* we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
 - for all $u \in S_n^*$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\overline{u})$
- We have the following diagram

$$S_n^{\ell} \xrightarrow{\mu} S_n^{\ell}$$

$$\downarrow^{\tau}$$

$$T_n(S_n; \ell) \xrightarrow{\mu^T} T_n(S_n; \ell)$$

Stable bijection

- Definition : A bijection μ of S_n^* is S_n -stable whenever :
 - $-\mu$ preserves the word length,
 - for all u, v in S_n^* we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
 - for all $u \in S_n^*$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\overline{u})$
- We have the following diagram

$$S_n^{\ell} \xrightarrow{\mu} S_n^{\ell}$$

$$\downarrow^{\tau}$$

$$T_n(S_n; \ell) \xrightarrow{\mu^T} T_n(S_n; \ell)$$

• Proposition : If $W \vdash B_n(S_n; \ell, t)$ then $\mu(W) \vdash B_n(S_n; \ell, \mu^T(t))$

Stable bijection

- Definition : A bijection μ of S_n^* is S_n -stable whenever :
 - $-\mu$ preserves the word length,
 - for all u, v in S_n^* we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
 - for all $u \in S_n^*$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\overline{u})$
- We have the following diagram

$$S_n^{\ell} \xrightarrow{\mu} S_n^{\ell}$$

$$\downarrow^{\tau}$$

$$T_n(S_n; \ell) \xrightarrow{\mu^T} T_n(S_n; \ell)$$

- Proposition : If $W \vdash B_n(S_n; \ell, t)$ then $\mu(W) \vdash B_n(S_n; \ell, \mu^T(t))$
 - ▶ It is sufficient to compute only one of these sets.

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

$$\mathsf{inv}_{\Sigma_n}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

$$\operatorname{inv}_{\Sigma_n}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

$$\mathsf{mir}_{\Sigma_n}(x_1\cdots x_\ell)=(x_\ell\cdots x_1)$$

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

$$\begin{aligned} & \mathsf{inv}_{\Sigma_n}(x_1 \cdots x_\ell) = (x_\ell^{-1} \cdots x_1^{-1}) \\ & \mathsf{mir}_{\Sigma_n}(x_1 \cdots x_\ell) = (x_\ell \cdots x_1) \\ & \Phi_{\Sigma_n}(x_1 \cdots x_\ell) = (\Phi_n(x_1) \cdots \Phi_m(x_\ell)) \end{aligned}$$

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

$$\begin{split} & \mathsf{inv}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell^{-1}\cdots x_1^{-1}) \\ & \mathsf{mir}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell\cdots x_1) \\ & \Phi_{\Sigma_n}(x_1\cdots x_\ell) = (\Phi_n(x_1)\cdots\Phi_m(x_\ell)) \end{split} \qquad \text{where } \Phi_n(\sigma_i^e) = \sigma_{n-i}^e \end{split}$$

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

• Definition :

$$\begin{aligned} &\operatorname{inv}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell^{-1}\cdots x_1^{-1}) \\ &\operatorname{mir}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell\cdots x_1) \\ &\Phi_{\Sigma_n}(x_1\cdots x_\ell) = (\Phi_n(x_1)\cdots \Phi_m(x_\ell)) \end{aligned} \quad \text{where } \Phi_n(\sigma_i^e) = \sigma_{n-i}^e \end{aligned}$$

▶ They are all Σ_n -stable.

Here $S_n = \Sigma_n$ and we fix $\ell \geqslant 2$.

$$\begin{aligned} &\operatorname{inv}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell^{-1}\cdots x_1^{-1}) \\ &\operatorname{mir}_{\Sigma_n}(x_1\cdots x_\ell) = (x_\ell\cdots x_1) \\ &\Phi_{\Sigma_n}(x_1\cdots x_\ell) = (\Phi_n(x_1)\cdots \Phi_m(x_\ell)) \end{aligned} \quad \text{where } \Phi_n(\sigma_i^e) = \sigma_{n-i}^e \end{aligned}$$

- ▶ They are all Σ_n -stable.
- Lemma : The subgroups G_{Σ_n} of bijections of $T_n(\Sigma_n; \ell)$ generated by $\{\operatorname{inv}_{\Sigma_n}^T, \operatorname{mir}_{\Sigma_n}^T, \Phi_{\Sigma_n}^T\}$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$.

Stable bijections - dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

Stable bijections – dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

$$\mathsf{inv}_{\Sigma_n^*}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

Stable bijections - dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

$$\operatorname{inv}_{\Sigma_n^*}(x_1 \cdots x_\ell) = (x_\ell^{-1} \cdots x_1^{-1})$$
$$\varphi_{\Sigma_n^*}(x_1 \cdots x_\ell) = (\varphi_n(x_1) \cdots \varphi_n(x_\ell))$$

Stable bijections - dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

• Definition :

$$\operatorname{inv}_{\Sigma_n^*}(x_1\cdots x_\ell) = (x_\ell^{-1}\cdots x_1^{-1})$$

$$\varphi_{\Sigma_n^*}(x_1\cdots x_\ell)=(\varphi_n(x_1)\cdots\varphi_n(x_\ell))$$

where

$$\varphi_n(a_{i,j}^e) = \begin{cases} a_{i+1,j+1}^e & \text{if } j < n, \\ a_{1,i+1}^e & \text{if } j = m. \end{cases}$$

Stable bijections – dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

• Definition :

$$\mathsf{inv}_{\Sigma_n^*}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

$$\varphi_{\Sigma_n^*}(x_1\cdots x_\ell)=(\varphi_n(x_1)\cdots\varphi_n(x_\ell))$$

where

$$\varphi_n(a_{i,j}^e) = \begin{cases} a_{i+1,j+1}^e & \text{if } j < n, \\ a_{1,i+1}^e & \text{if } j = m. \end{cases}$$

▶ They are all $\sum_{n=0}^{\infty}$ -stable.

Stable bijections - dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

• Definition :

$$\mathsf{inv}_{\Sigma_n^*}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

$$\varphi_{\Sigma_n^*}(x_1\cdots x_\ell)=(\varphi_n(x_1)\cdots\varphi_n(x_\ell))$$

where

$$\varphi_n(a_{i,j}^e) = \begin{cases} a_{i+1,j+1}^e & \text{if } j < n, \\ a_{1,i+1}^e & \text{if } j = m. \end{cases}$$

- ▶ They are all Σ_n^* -stable.
- ▶ No counter part of mir_{Σ_n} .

Stable bijections – dual case

Here $S_n = \Sigma_n^*$ and we fix $\ell \geqslant 2$.

• Definition :

$$\mathsf{inv}_{\Sigma_n^*}(x_1\cdots x_\ell)=(x_\ell^{-1}\cdots x_1^{-1})$$

$$\varphi_{\Sigma_n^*}(x_1\cdots x_\ell)=(\varphi_n(x_1)\cdots\varphi_n(x_\ell))$$

where

$$\varphi_n(a_{i,j}^e) = \begin{cases} a_{i+1,j+1}^e & \text{if } j < n, \\ a_{1,i+1}^e & \text{if } j = m. \end{cases}$$

- ▶ They are all Σ_n^* -stable.
- ▶ No counter part of mir_{Σ_n} .
- Lemma : The subgroups $G_{\Sigma_n^*}$ of bijections of $T_n(\Sigma_n^*; \ell)$ generated by $\{\operatorname{inv}_{\Sigma^*}^T, \varphi_{\Sigma^*}^T\}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

 S_n denotes either Σ_n or Σ_n^*

 S_n denotes either Σ_n or Σ_n^*

• Definition : A template $t \in T_n(S_n)$ is reduced if it is minimal in $G_{S_n} \star t$.

 S_n denotes either Σ_n or Σ_n^*

- Definition : A template $t \in T_n(S_n)$ is reduced if it is minimal in $G_{S_n} \star t$.
- Proposition: $s(B_n,S_n;\ell) = \sum_{t \in T_n(S_n;\ell)} \operatorname{card}\left(B_n(S_n;\ell,t)\right)$ $= \sum_{\substack{t \in T_n(S_n;\ell) \\ t \text{ reduced}}} \operatorname{card}\left(B_n(S_n;\ell,t)\right) \times \operatorname{card}\left(G_{S_n} \star t\right)$

 S_n denotes either Σ_n or Σ_n^*

• Definition : A template $t \in T_n(S_n)$ is reduced if it is minimal in $G_{S_n} \star t$.

• Proposition : $s(B_n, S_n; \ell) = \sum_{t \in T_n(S_n; \ell)} \operatorname{card}(B_n(S_n; \ell, t))$ $= \sum_{\substack{t \in T_n(S_n; \ell) \\ t \text{ reduced}}} \operatorname{card}(B_n(S_n; \ell, t)) \times \operatorname{card}(G_{S_n} \star t)$

▶ Can be effictively used from an algorithmic point of view.

Experimentation

• Implementation : Distribued C++ code based on a clients / server model.

Experimentation

- Implementation : Distribued C++ code based on a clients / server model.
- Machine : A node of the computationnal plateform Calculco with
 - 256 Go of RAM memory
 - 2 processors with 64 cores each for a total of 128 cores
 - with an access to a distribued storage space of 30 To

Experimentation

- Implementation : Distribued C++ code based on a clients / server model.
- Machine : A node of the computationnal plateform Calculco with
 - 256 Go of RAM memory
 - 2 processors with 64 cores each for a total of 128 cores
 - with an access to a distribued storage space of 30 To
- Validation of L. Sabalka formulas :

$$\begin{split} \mathcal{S}(B_3, \Sigma_3) = & \frac{(t+1)(2t^3 - t^2 + t - 1)}{(t-1)(2t-1)(t^2 + t - 1)}, \\ \mathcal{G}(B_3, \Sigma_3) = & \frac{t^4 + 3t^3 + t + 1}{(t^2 + 2t - 1)(t^2 + t - 1)}. \end{split}$$

ℓ	$s(B_3, \Sigma_3^*; \ell)$	$g(B_3, \Sigma_3^*; \ell)$	ℓ	$s(B_3,\Sigma_3^*;\ell)$	$g(B_3,\Sigma_3^*;\ell)$
0	1	1	11	38 910	6 639 606
1	6	6	12	83 966	26 216 418
2	20	30	13	180 222	103 827 366
3	54	126	14	385 022	412 169 970
4	134	498	15	819 198	1 639 212 246
5	318	1 926	16	1736702	6 528 347 778
6	734	7 410	17	3 670 014	26 027 690 886
7	1 662	28 566	18	7 733 246	103 853 269 650
8	3 710	110 658	19	16 252 926	414 639 810 486
9	8 190	431 046	20	34 078 718	1 656 237 864 738
10	17 918	1 687 890	21	71 303 166	6 617 984 181 606

• Conjecture:
$$\mathcal{S}(B_3, \Sigma_3^*) = \frac{(t+1)(2t^2-1)}{(t-1)(2t-1)^2}, \quad \mathcal{G}(B_3, \Sigma_3^*) = \frac{12t^3 - 2t^2 + 3t - 1}{(2t-1)(3t-1)(4t-1)}.$$

ℓ	$s(B_3, \Sigma_3^*; \ell)$	$g(B_3, \Sigma_3^*; \ell)$	ℓ	$s(B_3,\Sigma_3^*;\ell)$	$g(B_3,\Sigma_3^*;\ell)$
0	1	1	11	38 910	6 639 606
1	6	6	12	83 966	26 216 418
2	20	30	13	180 222	103 827 366
3	54	126	14	385 022	412 169 970
4	134	498	15	819 198	1 639 212 246
5	318	1 926	16	1736702	6 528 347 778
6	734	7 410	17	3 670 014	26 027 690 886
7	1 662	28 566	18	7 733 246	103 853 269 650
8	3 710	110 658	19	16 252 926	414 639 810 486
9	8 190	431 046	20	34 078 718	1 656 237 864 738
10	17 918	1 687 890	21	71 303 166	6 617 984 181 606

• Conjecture:
$$\mathcal{S}(B_3, \Sigma_3^*) = \frac{(t+1)(2t^2-1)}{(t-1)(2t-1)^2}, \quad \mathcal{G}(B_3, \Sigma_3^*) = \frac{12t^3 - 2t^2 + 3t - 1}{(2t-1)(3t-1)(4t-1)}.$$

ℓ	$s(B_3, \Sigma_3^*; \ell)$	$g(B_3, \Sigma_3^*; \ell)$	ℓ	$s(B_3,\Sigma_3^*;\ell)$	$g(B_3,\Sigma_3^*;\ell)$
0	1	1	11	38 910	6 639 606
1	6	6	12	83 966	26 216 418
2	20	30	13	180 222	103 827 366
3	54	126	14	385 022	412 169 970
4	134	498	15	819 198	1 639 212 246
5	318	1 926	16	1736702	6 528 347 778
6	734	7 410	17	3 670 014	26 027 690 886
7	1 662	28 566	18	7733246	103 853 269 650
8	3 710	110 658	19	16 252 926	414 639 810 486
9	8 190	431 046	20	34 078 718	1 656 237 864 738
10	17 918	1 687 890	21	71 303 166	6 617 984 181 606

• Conjecture :
$$\mathcal{S}(B_3, \Sigma_3^*) = \frac{(t+1)(2t^2-1)}{(t-1)(2t-1)^2}, \quad \mathcal{G}(B_3, \Sigma_3^*) = \frac{12t^3-2t^2+3t-1}{(2t-1)(3t-1)(4t-1)}.$$

▶ With growth rates of 2 and 4 respectively.

ℓ	$s(B_4, \Sigma_4; \ell)$	$g(B_4, \Sigma_4; \ell)$	ℓ	$s(B_4,\Sigma_4;\ell)$	$g(B_4,\Sigma_4;\ell)$
0	1	1	13	9 007 466	281 799 158
1	6	6	14	27 218 486	1 153 638 466
2	26	30	15	82 133 734	4710108514
3	98	142	16	247 557 852	19 186 676 438
4	338	646	17	745 421 660	78 004 083 510
5	1 110	2870	18	2 242 595 598	316 591 341 866
6	3 542	12 558	19	6741618346	1 283 041 428 650
7	11 098	54 026	20	20 252 254 058	5 193 053 664 554
8	34 362	229 338	21	60 800 088 680	20 994 893 965 398
9	105 546	963 570	22	182 422 321 452	84 795 261 908 498
10	322 400	4 016 674	23	547 032 036 564	342 173 680 884 002
11	980 904	16 641 454	24	1 639 548 505 920	1 379 691 672 165 334
12	2 975 728	68 614 150	25	4 911 638 066 620	5 559 241 797 216 166

ℓ	$s(B_4, \Sigma_4; \ell)$	$g(B_4, \Sigma_4; \ell)$	ℓ	$s(B_4, \Sigma_4; \ell)$	$g(B_4, \Sigma_4; \ell)$
0	1	1	13	9 007 466	281 799 158
1	6	6	14	27 218 486	1 153 638 466
2	26	30	15	82 133 734	4710108514
3	98	142	16	247 557 852	19 186 676 438
4	338	646	17	745 421 660	78 004 083 510
5	1 110	2870	18	2 242 595 598	316 591 341 866
6	3 542	12 558	19	6741618346	1 283 041 428 650
7	11 098	54 026	20	20 252 254 058	5 193 053 664 554
8	34 362	229 338	21	60 800 088 680	20 994 893 965 398
9	105 546	963 570	22	182 422 321 452	84 795 261 908 498
10	322 400	4 016 674	23	547 032 036 564	342 173 680 884 002
11	980 904	16 641 454	24	1 639 548 505 920	1 379 691 672 165 334
12	2 975 728	68 614 150	25	4 911 638 066 620	5 559 241 797 216 166

▶ No good conjectures.

ℓ	$s(B_4, \Sigma_4; \ell)$	$g(B_4, \Sigma_4; \ell)$	ℓ	$s(B_4,\Sigma_4;\ell)$	$g(B_4, \Sigma_4; \ell)$
0	1	1	13	9 007 466	281 799 158
1	6	6	14	27 218 486	1 153 638 466
2	26	30	15	82 133 734	4710108514
3	98	142	16	247 557 852	19 186 676 438
4	338	646	17	745 421 660	78 004 083 510
5	1 110	2870	18	2 242 595 598	316 591 341 866
6	3 542	12 558	19	6741618346	1 283 041 428 650
7	11 098	54 026	20	20 252 254 058	5 193 053 664 554
8	34 362	229 338	21	60 800 088 680	20 994 893 965 398
9	105 546	963 570	22	182 422 321 452	84 795 261 908 498
10	322 400	4 016 674	23	547 032 036 564	342 173 680 884 002
11	980 904	16 641 454	24	1 639 548 505 920	1 379 691 672 165 334
12	2 975 728	68 614 150	25	4 911 638 066 620	5 559 241 797 216 166

- ▶ No good conjectures.
- \blacktriangleright The storage of all braids of \textit{B}_{4} with geodesic $\Sigma_{4}\text{-length}\leqslant25$

ℓ	$s(B_4,\Sigma_4;\ell)$	$g(B_4,\Sigma_4;\ell)$	ℓ	$s(B_4, \Sigma_4; \ell)$	$g(B_4,\Sigma_4;\ell)$
0	1	1	13	9 007 466	281 799 158
1	6	6	14	27 218 486	1 153 638 466
2	26	30	15	82 133 734	4710108514
3	98	142	16	247 557 852	19 186 676 438
4	338	646	17	745 421 660	78 004 083 510
5	1 110	2870	18	2 242 595 598	316 591 341 866
6	3 542	12 558	19	6741618346	1 283 041 428 650
7	11 098	54 026	20	20 252 254 058	5 193 053 664 554
8	34 362	229 338	21	60 800 088 680	20 994 893 965 398
9	105 546	963 570	22	182 422 321 452	84 795 261 908 498
10	322 400	4 016 674	23	547 032 036 564	342 173 680 884 002
11	980 904	16 641 454	24	1 639 548 505 920	1 379 691 672 165 334
12	2 975 728	68 614 150	25	4 911 638 066 620	5 559 241 797 216 166

- ▶ No good conjectures.
- ▶ The storage of all braids of B_4 with geodesic Σ_4 -length ≤ 25 requires 26 To of disk space.

Four strands - dual case

Four strands - dual case

ℓ	$s(B_4,\Sigma_4^*;\ell)$	$g(B_4, \Sigma_4^*; \ell)$	ℓ	$S(B_4,\Sigma_4^*;\ell)$	$g(B_4, \Sigma_4^*; \ell)$
0	1	1	9	7 348 366	708 368 540
1	12	12	10	35 773 324	6 128 211 364
2	84	132	11	173 885 572	52 826 999 612
3	478	1 340	12	844 277 874	454 136 092 148
4	2 500	12 788	13	4 095 929 948	3 895 624 824 092
5	12 612	117 452	14	19 858 981 932	33 359 143 410 468
6	62 570	1 053 604	15	96 242 356 958	285 259 736 104 444
7	303 356	9 311 420	16	466 262 144 180	2 436 488 694 821 748
8	1 506 212	81 488 628	17	2 258 320 991 652	20 790 986 096 580 060

Four strands – dual case

ℓ	$s(B_4, \Sigma_4^*; \ell)$	$g(B_4, \Sigma_4^*; \ell)$	ℓ	$S(B_4,\Sigma_4^*;\ell)$	$g(B_4, \Sigma_4^*; \ell)$
0	1	1	9	7 348 366	708 368 540
1	12	12	10	35 773 324	6 128 211 364
2	84	132	11	173 885 572	52 826 999 612
3	478	1 340	12	844 277 874	454 136 092 148
4	2 500	12 788	13	4 095 929 948	3 895 624 824 092
5	12 612	117 452	14	19 858 981 932	33 359 143 410 468
6	62 570	1 053 604	15	96 242 356 958	285 259 736 104 444
7	303 356	9 311 420	16	466 262 144 180	2 436 488 694 821 748
8	1 506 212	81 488 628	17	2 258 320 991 652	20 790 986 096 580 060

• Conjecture :
$$\mathcal{S}(\mathcal{B}_4, \Sigma_4^*) = -\frac{(t+1)(10t^6 - 10t^5 - 3t^4 + 11t^3 - 4t^2 - 3t + 1)}{(t-1)(5t^2 - 5t + 1)(10t^4 - 20t^3 + 19^2 - 8t + 1)}$$

Four strands - dual case

ℓ	$s(B_4, \Sigma_4^*; \ell)$	$g(B_4, \Sigma_4^*; \ell)$	ℓ	$S(B_4, \Sigma_4^*; \ell)$	$g(B_4,\Sigma_4^*;\ell)$
0	1	1	9	7 348 366	708 368 540
1	12	12	10	35 773 324	6 128 211 364
2	84	132	11	173 885 572	52 826 999 612
3	478	1 340	12	844 277 874	454 136 092 148
4	2 500	12 788	13	4 095 929 948	3 895 624 824 092
5	12 612	117 452	14	19 858 981 932	33 359 143 410 468
6	62 570	1 053 604	15	96 242 356 958	285 259 736 104 444
7	303 356	9 311 420	16	466 262 144 180	2 436 488 694 821 748
8	1 506 212	81 488 628	17	2 258 320 991 652	20 790 986 096 580 060
	'	'			'

• Conjecture :
$$\mathcal{S}(\mathcal{B}_4, \Sigma_4^*) = -\frac{(t+1)(10t^6 - 10t^5 - 3t^4 + 11t^3 - 4t^2 - 3t + 1)}{(t-1)(5t^2 - 5t + 1)(10t^4 - 20t^3 + 19^2 - 8t + 1)}$$

▶ The growth rate of $S(B_4, \Sigma_4^*)$ is $\simeq 4.8$.

Four strands - dual case

ℓ	$s(B_4, \Sigma_4^*; \ell)$	$g(B_4, \Sigma_4^*; \ell)$	ℓ	$S(B_4, \Sigma_4^*; \ell)$	$g(B_4,\Sigma_4^*;\ell)$
0	1	1	9	7 348 366	708 368 540
1	12	12	10	35 773 324	6 128 211 364
2	84	132	11	173 885 572	52 826 999 612
3	478	1 340	12	844 277 874	454 136 092 148
4	2 500	12 788	13	4 095 929 948	3 895 624 824 092
5	12 612	117 452	14	19 858 981 932	33 359 143 410 468
6	62 570	1 053 604	15	96 242 356 958	285 259 736 104 444
7	303 356	9 311 420	16	466 262 144 180	2 436 488 694 821 748
8	1 506 212	81 488 628	17	2 258 320 991 652	20 790 986 096 580 060
	'	'			'

• Conjecture :
$$\mathcal{S}(B_4, \Sigma_4^*) = -\frac{(t+1)(10t^6 - 10t^5 - 3t^4 + 11t^3 - 4t^2 - 3t + 1)}{(t-1)(5t^2 - 5t + 1)(10t^4 - 20t^3 + 19^2 - 8t + 1)}$$

- ▶ The growth rate of $S(B_4, \Sigma_4^*)$ is $\simeq 4.8$.
- ▶ No good conjecture for $\mathcal{G}(B_4, \Sigma_4^*)$.

Thank you!