# Experiments on growth series of braid groups 

Jean Fromentin

Université du Littoral
Calais, France

## Words

Let $S$ be a finite generating set of a semigroup $M$.

## Words

Let $S$ be a finite generating set of a semigroup $M$.

- Definitions:
- the empty word is denoted by $\varepsilon$;
- a word on the alphabet $S$ is an $S$-word;
- the set of all $S$-words is denoted by $S^{*}$;
- for $u \in S^{*}:|u|$ its length and $\bar{u}$ the element of $M$ it represents;
- two $S$-words $u$ and $v$ are equivalent, denoted by $u \equiv v$, if they represent the same element in $M$, i.e., $\bar{u}=\bar{v}$.


## Words

Let $S$ be a finite generating set of a semigroup $M$.

- Definitions:
- the empty word is denoted by $\varepsilon$;
- a word on the alphabet $S$ is an $S$-word;
- the set of all $S$-words is denoted by $S^{*}$;
- for $u \in S^{*}:|u|$ its length and $\bar{u}$ the element of $M$ it represents;
- two $S$-words $u$ and $v$ are equivalent, denoted by $u \equiv v$, if they represent the same element in $M$, i.e., $\bar{u}=\bar{v}$.
- Examples: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.


## Words

Let $S$ be a finite generating set of a semigroup $M$.

- Definitions:
- the empty word is denoted by $\varepsilon$;
- a word on the alphabet $S$ is an $S$-word;
- the set of all $S$-words is denoted by $S^{*}$;
- for $u \in S^{*}:|u|$ its length and $\bar{u}$ the element of $M$ it represents;
- two $S$-words $u$ and $v$ are equivalent, denoted by $u \equiv v$, if they represent the same element in $M$, i.e., $\bar{u}=\bar{v}$.
- Examples: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.
$-\overline{a a}=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbf{1}_{\mathfrak{S}_{3}}=\bar{\varepsilon}$ and so $a a \equiv \varepsilon($ and also $b b \equiv \varepsilon)$.


## Words

Let $S$ be a finite generating set of a semigroup $M$.

- Definitions:
- the empty word is denoted by $\varepsilon$;
- a word on the alphabet $S$ is an $S$-word;
- the set of all $S$-words is denoted by $S^{*}$;
- for $u \in S^{*}:|u|$ its length and $\bar{u}$ the element of $M$ it represents;
- two $S$-words $u$ and $v$ are equivalent, denoted by $u \equiv v$, if they represent the same element in $M$, i.e., $\bar{u}=\bar{v}$.
- Examples: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=\left(\begin{array}{ll}2 & 3\end{array}\right)$ and $S=\{a, b\}$.
$-\overline{\mathrm{aa}}=\left(\begin{array}{ll}1 & 2\end{array} \circ\left(\begin{array}{ll}1 & 2\end{array}\right)=\mathbf{1}_{\mathfrak{S}_{3}}=\bar{\varepsilon}\right.$ and so $a a \equiv \varepsilon$ (and also $\left.b b \equiv \varepsilon\right)$.
$-\overline{a b a}=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{ll}2 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$,
$\overline{b a b}=\left(\begin{array}{ll}2 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{ll}2 & 3\end{array}\right)=\left(\begin{array}{ll}2 & 3\end{array}\right) \circ\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$
and so $a b a \equiv b a b$.


## Spherical growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition: The $S$-length of an element $x \in M$, denoted $|x|_{S}$, is the length of a shortest $S$-word representing $x$.


## Spherical growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition: The $S$-length of an element $x \in M$, denoted $|x|_{S}$, is the length of a shortest $S$-word representing $x$.
- $|x|_{S}$ corresponds to the distance from $\mathbf{1}_{M}$ to $x$ in $\operatorname{Cay}(M, S)$.


## Spherical growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition: The $S$-length of an element $x \in M$, denoted $|x|_{S}$, is the length of a shortest $S$-word representing $x$.
- $|x|_{S}$ corresponds to the distance from $\mathbf{1}_{M}$ to $x$ in $\operatorname{Cay}(M, S)$.
- Definition : For any $\ell \in \mathbb{N}$, we put

$$
s(M, S ; \ell)=\operatorname{card}\left(\left\{x \in M \text { s.t. }|x|_{S}=\ell\right\}\right) .
$$

## Spherical growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition: The $S$-length of an element $x \in M$, denoted $|x|_{S}$, is the length of a shortest $S$-word representing $x$.
- $|x|_{S}$ corresponds to the distance from $\mathbf{1}_{M}$ to $x$ in $\operatorname{Cay}(M, S)$.
- Definition : For any $\ell \in \mathbb{N}$, we put

$$
s(M, S ; \ell)=\operatorname{card}\left(\left\{x \in M \text { s.t. }|x|_{S}=\ell\right\}\right) .
$$

The spherical growth series of $M$ w.r.t. $S$ is

$$
\mathcal{S}(M, S)=\sum_{x \in M} t^{|x| s}=\sum_{\ell \in \mathbb{N}} s(M, S ; \ell) t^{\ell} .
$$

## Spherical growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition: The $S$-length of an element $x \in M$, denoted $|x|_{S}$, is the length of a shortest $S$-word representing $x$.
- $|x|_{S}$ corresponds to the distance from $\mathbf{1}_{M}$ to $x$ in $\operatorname{Cay}(M, S)$.
- Definition : For any $\ell \in \mathbb{N}$, we put

$$
s(M, S ; \ell)=\operatorname{card}\left(\left\{x \in M \text { s.t. }|x|_{S}=\ell\right\}\right) .
$$

The spherical growth series of $M$ w.r.t. $S$ is

$$
\mathcal{S}(M, S)=\sum_{x \in M} t^{|x| s}=\sum_{\ell \in \mathbb{N}} s(M, S ; \ell) t^{\ell} .
$$

- $\operatorname{card}(M)=\left.\mathcal{S}(M, S)\right|_{t=1}$.


## Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.


## Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.



## Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.


Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=\left(\begin{array}{ll}12) \\ 1 & b=(23)\end{array}\right)$ and $S=\{a, b\}$.
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$


## Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$


## Spherical growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.
$\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)$


## Spherical growth series - Example

- Example : $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.

- Example :

$$
s\left(\mathfrak{S}_{3}, S, \ell\right)= \begin{cases}1 & \text { if } \ell=0 \text { or } \ell=3 \\ 2 & \text { if } \ell=1 \text { or } \ell=2 \\ 0 & \text { if } \ell \geqslant 4\end{cases}
$$

and so $\mathcal{S}\left(\mathfrak{S}_{3}, S\right)=1+2 t+2 t^{2}+t^{3}$.

## Geodesic growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition : An $S$-word $u$ is said to be geodesic if $|u|=|\bar{u}|_{S}$ holds.


## Geodesic growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition : An $S$-word $u$ is said to be geodesic if $|u|=|\bar{u}|_{S}$ holds.
- Geodesic $S$-words correspond to geodesic paths on Cay $(M, S)$.


## Geodesic growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition : An $S$-word $u$ is said to be geodesic if $|u|=|\bar{u}|_{S}$ holds.
- Geodesic $S$-words correspond to geodesic paths on Cay $(M, S)$.
- Definition : For any $\ell \in \mathbb{N}$, we put

$$
g(M, S ; \ell)=\operatorname{card}\left(\left\{u \in S^{*} \text { s.t. }|u|=|\bar{u}|_{S}=\ell\right\}\right) .
$$

## Geodesic growth series

Let $S$ be a finite generating set of a semigroup $M$.

- Definition : An $S$-word $u$ is said to be geodesic if $|u|=|\bar{u}|_{S}$ holds.
- Geodesic $S$-words correspond to geodesic paths on Cay $(M, S)$.
- Definition : For any $\ell \in \mathbb{N}$, we put

$$
g(M, S ; \ell)=\operatorname{card}\left(\left\{u \in S^{*} \text { s.t. }|u|=|\bar{u}|_{S}=\ell\right\}\right) .
$$

The geodesic growth series of $M$ w.r.t. $S$ is

$$
\mathcal{G}(M, S)=\sum_{\substack{u \in \mathcal{S}^{*} \\|u|=|\bar{u}|_{S}}} t^{|u|}=\sum_{\ell \in \mathbb{N}} g(M, S ; \ell) t^{\ell}
$$

## Geodesic growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.
(123)


## Geodesic growth series - Example

- Example : $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$


## Geodesic growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.

$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \quad$| Geodesic $S$-words are |  |
| :--- | :--- |
| -1 | $-a$ and $b$ |

## Geodesic growth series - Example

- Example : $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.

$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \quad$| $-\varepsilon$ |
| :--- | :--- |
| 1 |

## Geodesic growth series - Example

- Example: $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.



## Geodesic growth series - Example

- Example : $M=\left(\mathfrak{S}_{3}, \circ\right), a=(12), b=(23)$ and $S=\{a, b\}$.


Geodesic $S$-words are
$-\varepsilon$

- $a$ and $b$
- $a b$ and $b a$
- aba and bab
- Example :

$$
g\left(\mathfrak{S}_{3}, S ; \ell\right)= \begin{cases}1 & \text { if } \ell=0 \\ 2 & \text { if } \ell=1 \text { or } \ell=2 \text { or } \ell=3, \\ 0 & \text { if } \ell \geqslant 4 .\end{cases}
$$

and so $\mathcal{G}\left(\mathfrak{S}_{3}, S\right)=1+2 t+2 t^{2}+2 t^{3}$.

## Braid words

## Braid words



## Braid words



Braid words


Braid words


Braid words


## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



## Braid words



Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition : For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition : For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.
- As a group $B_{n}$ is generated by $\Sigma_{n}^{+}$.

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} \mid & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition: For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.
- As a group $B_{n}$ is generated by $\sum_{n}^{+}$.
- But, as a semigroup, it is generated by $\Sigma_{n}$ with relations (1) together with $\sigma_{i} \sigma_{i}^{-1} \equiv \sigma_{i} \sigma_{i}^{-1} \equiv \varepsilon$ for all $i \in\{1, \ldots, n\}$.

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} \mid & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition: For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.
- As a group $B_{n}$ is generated by $\sum_{n}^{+}$.
- But, as a semigroup, it is generated by $\Sigma_{n}$ with relations (1) together with $\sigma_{i} \sigma_{i}^{-1} \equiv \sigma_{i} \sigma_{i}^{-1} \equiv \varepsilon$ for all $i \in\{1, \ldots, n\}$.
- Definition : $B_{n}^{+}$is the submonoid of $B_{n}$ generated by $\Sigma_{n}^{+}$.

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} \mid & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition: For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.
- As a group $B_{n}$ is generated by $\sum_{n}^{+}$.
- But, as a semigroup, it is generated by $\Sigma_{n}$ with relations (1) together with $\sigma_{i} \sigma_{i}^{-1} \equiv \sigma_{i} \sigma_{i}^{-1} \equiv \varepsilon$ for all $i \in\{1, \ldots, n\}$.
- Definition : $B_{n}^{+}$is the submonoid of $B_{n}$ generated by $\Sigma_{n}^{+}$.
- $B_{n}$ is the group of fractions of $B_{n}^{+}$.

Artin's presentation of braid groups

- Theorem (E. Artin 1925) : The braid group $B_{n}$ is presented by

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n-1} \mid & \sigma_{i} \sigma_{j} \equiv \sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2  \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i} \equiv \sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right\rangle
$$

- Definition: For all $n \geqslant 2$, we denote by $\Sigma_{n}^{+}$the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ and by $\Sigma_{n}$ the set $\Sigma_{n}^{+} \sqcup\left(\Sigma_{n}^{+}\right)^{-1}=\left\{\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}\right\}$.
- As a group $B_{n}$ is generated by $\sum_{n}^{+}$.
- But, as a semigroup, it is generated by $\Sigma_{n}$ with relations (1) together with $\sigma_{i} \sigma_{i}^{-1} \equiv \sigma_{i} \sigma_{i}^{-1} \equiv \varepsilon$ for all $i \in\{1, \ldots, n\}$.
- Definition : $B_{n}^{+}$is the submonoid of $B_{n}$ generated by $\Sigma_{n}^{+}$.
- $B_{n}$ is the group of fractions of $B_{n}^{+}$.
- As a semigroup $B_{n}^{+}$is presented by (1).


## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

- Construction of an explicit deterministic finite states automaton.


## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

- Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}\right)=\frac{(t+1)\left(2 t^{3}-t^{2}+t-1\right)}{(t-1)(2 t-1)\left(t^{2}+t-1\right)} .
$$

## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

- Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}\right)=\frac{(t+1)\left(2 t^{3}-t^{2}+t-1\right)}{(t-1)(2 t-1)\left(t^{2}+t-1\right)} .
$$

- In her PhD, M. Albenque computes the first 13 terms of $s\left(B_{4}, \Sigma_{4} ; \ell\right)$.


## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

- Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}\right)=\frac{(t+1)\left(2 t^{3}-t^{2}+t-1\right)}{(t-1)(2 t-1)\left(t^{2}+t-1\right)} .
$$

- In her PhD, M. Albenque computes the first 13 terms of $s\left(B_{4}, \Sigma_{4} ; \ell\right)$.
- She obtains $s\left(B_{4}, \Sigma_{4} ; 12\right)=2975728$.


## Artin growth series of braid groups

- Theorem (L. Sabalka 2004) :

$$
\mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)} .
$$

- Construction of an explicit deterministic finite states automaton.
- Using Knuth-Bendix methods by D. Holt, D.B.A Epstein and S. Rees, he also obtains

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}\right)=\frac{(t+1)\left(2 t^{3}-t^{2}+t-1\right)}{(t-1)(2 t-1)\left(t^{2}+t-1\right)} .
$$

- In her PhD, M. Albenque computes the first 13 terms of $s\left(B_{4}, \Sigma_{4} ; \ell\right)$.
- She obtains $s\left(B_{4}, \Sigma_{4} ; 12\right)=2975728$.
- Open question: Do $\mathcal{G}\left(B_{n}, \Sigma_{n}\right)$ and $\mathcal{S}\left(B_{n}, \Sigma_{n}\right)$ are rationals for $n \geqslant 4$ ?


## Artin growth series of braid semigroups

- Fact : As every $\Sigma_{n}^{+}$-word is geodesic, $\mathcal{G}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)$is irrelevant.


## Artin growth series of braid semigroups

- Fact: As every $\Sigma_{n}^{+}$-word is geodesic, $\mathcal{G}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)$is irrelevant.
- Theorem (A. Bronfman 2001) : We have

$$
\mathcal{S}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)=\frac{1}{P_{n}(t)}
$$

where $P_{n}(t)$ is given by

$$
P_{n}(t)=\sum_{i=1}^{n}(-1)^{i+1} t^{\frac{\gamma(i-1)}{2}} P_{n-i}(t)
$$

with $P_{0}(t)=P_{1}(t)=1$.

## Artin growth series of braid semigroups

- Fact: As every $\Sigma_{n}^{+}$-word is geodesic, $\mathcal{G}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)$is irrelevant.
- Theorem (A. Bronfman 2001) : We have

$$
\mathcal{S}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)=\frac{1}{P_{n}(t)}
$$

where $P_{n}(t)$ is given by

$$
P_{n}(t)=\sum_{i=1}^{n}(-1)^{i+1} t^{\frac{\gamma(i-1)}{2}} P_{n-i}(t)
$$

with $P_{0}(t)=P_{1}(t)=1$.

- Generalized to positive braid semigroups of types $B$ and $D$ by M. Albenque and P. Nadeau in 2009 using Viennot's heap of pieces.


## Artin growth series of braid semigroups

- Fact : As every $\Sigma_{n}^{+}$-word is geodesic, $\mathcal{G}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)$is irrelevant.
- Theorem (A. Bronfman 2001) : We have

$$
\mathcal{S}\left(B_{n}^{+}, \Sigma_{n}^{+}\right)=\frac{1}{P_{n}(t)}
$$

where $P_{n}(t)$ is given by

$$
P_{n}(t)=\sum_{i=1}^{n}(-1)^{i+1} t^{\frac{\gamma(i-1)}{2}} P_{n-i}(t)
$$

with $P_{0}(t)=P_{1}(t)=1$.

- Generalized to positive braid semigroups of types $B$ and $D$ by M. Albenque and P. Nadeau in 2009 using Viennot's heap of pieces.
- And for all spherical Artin-Tits semigroups by R. Flores and J. González-Meneses in 2018.


## Dual generators

- Definition : For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

## Dual generators

- Definition : For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :

$$
a_{1,4}=
$$

## Dual generators

- Definition: For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :
豖


## Dual generators

- Definition: For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :
両


## Dual generators

- Definition: For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :
豖乐


## Dual generators

- Definition : For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :

$$
=2
$$

- Definition: For all $n \geqslant 2$, we put

$$
\begin{aligned}
& \qquad \Sigma_{n}^{+*}=\left\{a_{p, q} \mid 1 \leqslant p<q \leqslant n\right\} \\
& \text { and } \Sigma_{n}^{*}=\Sigma_{n}^{+*} \sqcup\left(\Sigma_{n}^{+*}\right)^{-1} .
\end{aligned}
$$

## Dual generators

- Definition : For $1 \leqslant p \leqslant q$ we put

$$
a_{p, q}=\sigma_{p} \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_{p}^{-1}
$$

- Example :

$$
a_{1,4}=\frac{\pi}{x} \leftrightarrow \sim_{0}^{2}
$$

- Definition: For all $n \geqslant 2$, we put

$$
\begin{aligned}
& \qquad \Sigma_{n}^{+*}=\left\{a_{p, q} \mid 1 \leqslant p<q \leqslant n\right\} \\
& \text { and } \Sigma_{n}^{*}=\Sigma_{n}^{+*} \sqcup\left(\Sigma_{n}^{+*}\right)^{-1} .
\end{aligned}
$$

- As a semigroup, $B_{n}$ is generated by $\Sigma_{n}^{*}$.


## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations


## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, }
$$

## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \text { for } 1 \leqslant p<q<r \leqslant n .
\end{aligned}
$$

## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \text { for } 1 \leqslant p<q<r \leqslant n .
\end{aligned}
$$

## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \text { for } 1 \leqslant p<q<r \leqslant n .
\end{aligned}
$$



## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \text { for } 1 \leqslant p<q<r \leqslant n .
\end{aligned}
$$




## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \quad \text { for } 1 \leqslant p<q<r \leqslant n
\end{aligned}
$$



- Definition : We denote by $B_{n}^{+*}$ the submonoid of $B_{n}$ generated by $\Sigma_{n}^{+*}$.


## Dual presentation

- Theorem (J. Birman, K. H. Ko, S. J. Lee 1998) : In terms of $\sum_{n}^{+*}$, the group $B_{n}$ is presented by the relations

$$
\begin{aligned}
& a_{p, q} a_{r, s} \equiv a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \\
& a_{p, q} a_{q, r} \equiv a_{q, r} a_{p, r} \equiv a_{p, r} a_{p, q} \text { for } 1 \leqslant p<q<r \leqslant n .
\end{aligned}
$$


$a_{1,2} a_{3,4} \quad a_{3,4} a_{1,2}$


- Definition : We denote by $B_{n}^{+*}$ the submonoid of $B_{n}$ generated by $\Sigma_{n}^{+*}$.
- The group of fractions of $B_{n}^{+*}$ is also $B_{n}$.


## Dual growth series

- Theorem (M. Albenque, P. Nadeau 2009) :

$$
\mathcal{S}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

## Dual growth series

- Theorem (M. Albenque, P. Nadeau 2009) :

$$
\mathcal{S}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

- $\mathcal{G}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)$ is irrelevant as every $\Sigma_{n}^{+*}$-word is geodesic.


## Dual growth series

- Theorem (M. Albenque, P. Nadeau 2009) :

$$
\mathcal{S}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

- $\mathcal{G}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)$ is irrelevant as every $\Sigma_{n}^{+*}$-word is geodesic.
- They obtain similar results for dual braid monoids of type B and D.


## Dual growth series

- Theorem (M. Albenque, P. Nadeau 2009) :

$$
\mathcal{S}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

- $\mathcal{G}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)$ is irrelevant as every $\Sigma_{n}^{+*}$-word is geodesic.
- They obtain similar results for dual braid monoids of type B and D.
- Except for $n=2$, which is obvious, I can't found any result on $\mathcal{S}\left(B_{n}, \Sigma_{n}^{*}\right)$ or $\mathcal{G}\left(B_{n}, \Sigma_{n}^{*}\right)$ in the litterature.


## Dual growth series

- Theorem (M. Albenque, P. Nadeau 2009) :

$$
\mathcal{S}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

- $\mathcal{G}\left(B_{n}^{+*}, \Sigma_{n}^{+*}\right)$ is irrelevant as every $\Sigma_{n}^{+*}$-word is geodesic.
- They obtain similar results for dual braid monoids of type B and D.
- Except for $n=2$, which is obvious, I can't found any result on $\mathcal{S}\left(B_{n}, \Sigma_{n}^{*}\right)$ or $\mathcal{G}\left(B_{n}, \Sigma_{n}^{*}\right)$ in the litterature.
- Fact: We have $\Sigma_{2}^{*}=\Sigma_{2}^{+}=\left\{\sigma_{1}^{ \pm 1}\right\}$ and

$$
\mathcal{S}\left(B_{2},\left\{\sigma_{1}^{ \pm 1}\right\}\right)=\mathcal{G}\left(B_{2},\left\{\sigma_{1}^{ \pm 1}\right\}\right)=\mathcal{G}(\mathbb{Z},\{ \pm 1\})=\frac{1+t}{1-t} .
$$

## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Construct an algorithmic framework for computing

$$
\begin{aligned}
& -s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{\beta \in B_{n} \text { s.t. }|\beta| S_{n}=\ell\right\}\right), \\
& -g\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{u \in S_{n}^{*} \text { s.t. }|u|=|\bar{u}|_{S_{n}}=\ell\right\}\right) .
\end{aligned}
$$

## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Construct an algorithmic framework for computing

$$
\begin{aligned}
& -s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{\beta \in B_{n} \text { s.t. }|\beta| S_{n}=\ell\right\}\right), \\
& -g\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{u \in S_{n}^{*} \text { s.t. }|u|=|\bar{u}|_{S_{n}}=\ell\right\}\right) .
\end{aligned}
$$

- Efficient as possible, in particular in the case of $n \leqslant 4$.


## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Construct an algorithmic framework for computing

$$
\begin{aligned}
& -s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{\beta \in B_{n} \text { s.t. }|\beta|_{S_{n}}=\ell\right\}\right) \\
& -g\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{u \in S_{n}^{*} \text { s.t. }|u|=|\bar{u}|_{S_{n}}=\ell\right\}\right)
\end{aligned}
$$

- Efficient as possible, in particular in the case of $n \leqslant 4$.
- Here we focus on $s\left(B_{n}, S_{n} ; \ell\right)$.


## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Construct an algorithmic framework for computing

$$
\begin{aligned}
& -s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{\beta \in B_{n} \text { s.t. }|\beta| S_{n}=\ell\right\}\right), \\
& -g\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{u \in S_{n}^{*} \text { s.t. }|u|=|\bar{u}|_{S_{n}}=\ell\right\}\right)
\end{aligned}
$$

- Efficient as possible, in particular in the case of $n \leqslant 4$.
- Here we focus on $s\left(B_{n}, S_{n} ; \ell\right)$.
- Compute as many terms as possible of $s\left(B_{n}, S_{n} ; \ell\right)$ and $g\left(B_{n}, S_{n} ; \ell\right)$ with $n=4$ for $S_{n}=\Sigma_{n}$ and $n=3,4$ for $S_{n}=\Sigma_{n}^{*}$.


## Roadmap

For the sequel, $S_{n}$ will denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Construct an algorithmic framework for computing

$$
\begin{aligned}
& -s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{\beta \in B_{n} \text { s.t. }|\beta| S_{n}=\ell\right\}\right), \\
& -g\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(\left\{u \in S_{n}^{*} \text { s.t. }|u|=|\bar{u}|_{S_{n}}=\ell\right\}\right)
\end{aligned}
$$

- Efficient as possible, in particular in the case of $n \leqslant 4$.
- Here we focus on $s\left(B_{n}, S_{n} ; \ell\right)$.
- Compute as many terms as possible of $s\left(B_{n}, S_{n} ; \ell\right)$ and $g\left(B_{n}, S_{n} ; \ell\right)$ with $n=4$ for $S_{n}=\Sigma_{n}$ and $n=3,4$ for $S_{n}=\Sigma_{n}^{*}$.
- Try to guess rational values for
- $\mathcal{S}\left(B_{4}, \Sigma_{4}\right)$ and $\mathcal{G}\left(B_{4}, \Sigma_{4}\right)$,
- $\mathcal{S}\left(B_{3}, \Sigma_{3}^{*}\right)$ and $\mathcal{G}\left(B_{4}, \Sigma_{3}^{*}\right)$,
- $\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)$ and $\mathcal{G}\left(B_{4}, \Sigma_{4}^{*}\right)$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.
- For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.
- For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(W_{\ell}\right)$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.
- For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(W_{\ell}\right)$.
- Examples: We have $B_{n}\left(S_{n} ; 0\right)=\{1\}$ and so $\{\varepsilon\} \vdash B_{n}\left(S_{n} ; 0\right)$. With a little more work we obtain $S_{n} \vdash B_{n}\left(S_{n} ; 1\right)$.


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.
- For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(W_{\ell}\right)$.
- Examples: We have $B_{n}\left(S_{n} ; 0\right)=\{1\}$ and so $\{\varepsilon\} \vdash B_{n}\left(S_{n} ; 0\right)$. With a little more work we obtain $S_{n} \vdash B_{n}\left(S_{n} ; 1\right)$.
- Question : How to determine if a given $S_{n}$-word $u$ is geodesic?


## Representative sets

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$.

- Definition: $B_{n}\left(S_{n} ; \ell\right)=\left\{\beta \in B_{n}\right.$ s.t. $\left.|\beta| S_{n}=\ell\right\}$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(B_{n}\left(S_{n} ; \ell\right)\right)$.
- Definition : A set $W$ of $S_{n}$-words represents a subset $X$ of $B_{n}$, denoted $W \vdash X$, whenever
- words occuring in $W$ are geodesics;
- each braid of $X$ has a unique representative in $W$.
- For all $\ell \in \mathbb{N}$, we aim to construct a set $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$.
- $s\left(B_{n}, S_{n} ; \ell\right)=\operatorname{card}\left(W_{\ell}\right)$.
- Examples: We have $B_{n}\left(S_{n} ; 0\right)=\{1\}$ and so $\{\varepsilon\} \vdash B_{n}\left(S_{n} ; 0\right)$. With a little more work we obtain $S_{n} \vdash B_{n}\left(S_{n} ; 1\right)$.
- Question : How to determine if a given $S_{n}$-word $u$ is geodesic?
- No good algorithms.


## Representative sets: inductive construction

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.


## Representative sets : inductive construction

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition: We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.


## Representative sets : inductive construction

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition: We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_{n}\left(S_{n} ; \ell\right)$.


## Representative sets : inductive construction

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition: We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_{n}\left(S_{n} ; \ell\right)$. Assume we have constructed :

$$
W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right) \text { and } W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right) .
$$

We then construct

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition: We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_{n}\left(S_{n} ; \ell\right)$. Assume we have constructed :

$$
W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right) \text { and } W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)
$$

We then construct

- $W_{\ell}^{\prime \prime}=\left\{u \alpha\right.$ for $\left.(u, \alpha) \in W_{\ell-1} \times S_{n}\right\}$,


## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition: We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_{n}\left(S_{n} ; \ell\right)$. Assume we have constructed :

$$
W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right) \text { and } W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)
$$

We then construct
$-W_{\ell}^{\prime \prime}=\left\{u \alpha\right.$ for $\left.(u, \alpha) \in W_{\ell-1} \times S_{n}\right\}$,

- $W_{\ell}^{\prime}$ by keeping words $u$ of $W_{\ell}^{\prime \prime}$ that do not appear in $W_{\ell-2}$,


## Representative sets : inductive construction

## Assume $\ell \geqslant 2$.

- Lemma : Let $u$ be a geodesic $S_{n}$-word of length $\ell-1$ and $\alpha \in S_{n}$. If the word $u \alpha$ is not geodesic, then there exists a geodesic $S_{n}$-word $w$ of length $\ell-2$ satisfying $w \equiv u \alpha$.
- Definition : We say that an $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ whenever $u$ is equivalent to a word of $W$, denoted $u \triangleleft W$.
- We now tackle the construction of a representative set of $B_{n}\left(S_{n} ; \ell\right)$. Assume we have constructed :

$$
W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right) \text { and } W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)
$$

We then construct
$-W_{\ell}^{\prime \prime}=\left\{u \alpha\right.$ for $\left.(u, \alpha) \in W_{\ell-1} \times S_{n}\right\}$,

- $W_{\ell}^{\prime}$ by keeping words $u$ of $W_{\ell}^{\prime \prime}$ that do not appear in $W_{\ell-2}$,
- $W_{\ell}$ from $W_{\ell}^{\prime}$ by keeping only one word in each $\equiv$-classes.


## A first algorithm

- Algorithm $\left(W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right), W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)\right)$ : for $u \in W_{\ell-1}$ do for $\alpha \in S_{n}$ do $v \leftarrow u \alpha$ if $v \nexists W_{\ell-2}$ and $v \nexists W_{\ell}$ then $W_{\ell} \leftarrow W_{\ell} \sqcup\{v\}$ A new braid $\bar{v}$ of $B_{n}\left(S_{n} ; \ell\right)$ is found. end if end for
end for
return $W_{\ell}$


## A first algorithm

- Algorithm $\left(W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right), W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)\right)$ : for $u \in W_{\ell-1}$ do for $\alpha \in S_{n}$ do $v \leftarrow u \alpha$
if $v \nexists W_{\ell-2}$ and $v \nexists W_{\ell}$ then
$W_{\ell} \leftarrow W_{\ell} \sqcup\{v\} \quad$ A new braid $\bar{v}$ of $B_{n}\left(S_{n} ; \ell\right)$ is found. end if
end for
end for
return $W_{\ell}$
- Question : How to test if a $S_{n}$-word $u$ appears in a subset $W$ of $S_{n}^{*}$ ?


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.
- $u \triangleleft W$ requires at most $O(|W|)$ test of equivalence $\equiv$,


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.
- $u \triangleleft W$ requires at most $O(|W|)$ test of equivalence $\equiv$,
- Garside normal form does not preserve geodesic words.


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.
- $u \triangleleft W$ requires at most $O(|W|)$ test of equivalence $\equiv$,
- Garside normal form does not preserve geodesic words.
- A second idea : Representing $W$ by an ordered array using braid ordering introduced by P. Dehornoy.


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.
- $u \triangleleft W$ requires at most $O(|W|)$ test of equivalence $\equiv$,
- Garside normal form does not preserve geodesic words.
- A second idea : Representing $W$ by an ordered array using braid ordering introduced by P. Dehornoy.
- $u \triangleleft W$ requires at most $O(\log (|W|))$ comparisons.


## Representative sets implementation

- A $S_{n}$-word $u$ is naturally represented as an array of size $|u|$.

Les $W$ be a finite subset of $S_{n}^{*}$ and $u$ be a $S_{n}$-word. Does $u$ appear in $W$ ?

- A first idea : Representing $W$ by an array and use Garside normal form to detect equivalences.
- $u \triangleleft W$ requires at most $O(|W|)$ test of equivalence $\equiv$,
- Garside normal form does not preserve geodesic words.
- A second idea : Representing $W$ by an ordered array using braid ordering introduced by P. Dehornoy.
- $u \triangleleft W$ requires at most $O(\log (|W|))$ comparisons.
- Better but we can do more in this direction.


## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$.


## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :
$S_{n}$-words buckets arrays of $S_{n}$-words

| 100 |  |  |
| :--- | :--- | :--- |
| 101 |  | $A B a \mid \otimes$ |
| 102 | $\otimes$ |  |
| 103 | $\otimes$ |  |
| 104 |  | $a b a$ |

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :
$S_{n}$-words buckets arrays of $S_{n}$-words

| 100 |  | $A B a \mid \otimes$ |
| :---: | :---: | :---: |
| 101 |  |  |
| 102 | $\otimes$ | aba |
| 103 | $\otimes$ | $a b A \otimes$ |
| 104 |  |  |

We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :

| $S_{n}$-words | $h$ | buckets |  | arrays of $S_{n}$-words |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ! | : |  |  |  |
|  | ' | 100 |  |  | * |
| $a B A$ | , | 101 |  |  |  |
|  | ! | 102 | Q | $a b$ | $\otimes$ |
|  | ! | 103 | $\otimes$ | $a b$ | \| $\otimes$ |
|  | ! | 104 |  |  |  |
|  | ! |  |  |  |  |

We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :

| $S_{n}$-words | buckets |  | arrays of $S_{n}$-words |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | 100 |  | $A B$ |
| aBA | 101 |  |  |
| bab | 102 | $\otimes$ |  |
|  | 103 | - | $a b$ |
|  | 104 |  | aB |

We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

## Use of a hash table

- Assume we have a map $h: S_{n}^{*} \rightarrow \mathbb{N}$ s.t. $h(u)=h(v)$ whenever $u \equiv v$. We can then represent a subset $W$ of $S_{n}^{*}$ using a hash table :


We want to insert $a B A, b a b, A b a$ if they do not appear in $W$.

- In average case, insertion has a constant time complexity and a linear one in worst case.


## Dynnikov's coordinates

## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates

1

$\sigma_{1}$


## Dynnikov's coordinates



## Dynnikov's coordinates



## Dynnikov's coordinates


$z_{i}=$ intersection number of the lamination with the edge $e_{i}$.

## Dynnikov's coordinates


$z_{i}=$ intersection number of the lamination with the edge $e_{i}$.

## Dynnikov's coordinates


$z_{i}=$ intersection number of the lamination with the edge $e_{i}$.

## Dynnikov's coordinates


$z_{i}=$ intersection number of the lamination with the edge $e_{i}$.

$$
x_{i}=\left(z_{3 i}-z_{3 i+1}\right) / 2 \text { and } y_{i}=\left(z_{3 i-1}-z_{3 i+2}\right) / 2
$$

## Dynnikov's coordinates


$z_{i}=$ intersection number of the lamination with the edge $e_{i}$.

$$
x_{i}=\left(z_{3 i}-z_{3 i+1}\right) / 2 \text { and } y_{i}=\left(z_{3 i-1}-z_{3 i+2}\right) / 2
$$

- Definition : For $u \in S_{n}^{*}$, we put $\rho_{D}(u)=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \in \mathbb{Z}^{2 n}$.


## Dynnikov's coordinates



- Definition : For $u \in S_{n}^{*}$, we put $\rho_{D}(u)=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \in \mathbb{Z}^{2 n}$.
- Examples : $\rho_{D}(1)=(0,1,0,1,0,1)$ and $\rho_{D}\left(\sigma_{1}\right)=(1,0,0,2,0,1)$.


## Dynnikov's coordinates - Properties

- Fact : Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.


## Dynnikov's coordinates - Properties

- Fact: Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.


## Dynnikov's coordinates - Properties

- Fact : Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.
- Theorem (I. Dynnikov 2002) For two $S_{n}$ words $u$ and $v$, we have

$$
\rho_{D}(u)=\rho_{D}(v) \Leftrightarrow u \equiv v
$$

## Dynnikov's coordinates - Properties

- Fact : Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.
- Theorem (I. Dynnikov 2002) For two $S_{n}$ words $u$ and $v$, we have

$$
\rho_{D}(u)=\rho_{D}(v) \Leftrightarrow u \equiv v
$$

and Dehornoy ordering relation $\bar{u}<\bar{v}$ can be read on $\rho_{D}\left(u^{-1} v\right)$.

## Dynnikov's coordinates - Properties

- Fact: Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.
- Theorem (I. Dynnikov 2002) For two $S_{n}$ words $u$ and $v$, we have

$$
\rho_{D}(u)=\rho_{D}(v) \Leftrightarrow u \equiv v
$$

and Dehornoy ordering relation $\bar{u}<\bar{v}$ can be read on $\rho_{D}\left(u^{-1} v\right)$.

- Definition : For $u \in S_{4}^{*}$ we define

$$
h(u)=\sum_{i=0}^{7} \operatorname{rem}\left(c_{i}, 256\right) 256^{i}
$$

where $\left(c_{0}, \ldots, c_{7}\right)=\rho_{D}(u)$ and rem $(c, 256)$ is the reminder of $a \div 256$.

## Dynnikov's coordinates - Properties

- Fact: Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.
- Theorem (I. Dynnikov 2002) For two $S_{n}$ words $u$ and $v$, we have

$$
\rho_{D}(u)=\rho_{D}(v) \Leftrightarrow u \equiv v
$$

and Dehornoy ordering relation $\bar{u}<\bar{v}$ can be read on $\rho_{D}\left(u^{-1} v\right)$.

- Definition : For $u \in S_{4}^{*}$ we define

$$
h(u)=\sum_{i=0}^{7} \operatorname{rem}\left(c_{i}, 256\right) 256^{i}
$$

where $\left(c_{0}, \ldots, c_{7}\right)=\rho_{D}(u)$ and rem $(c, 256)$ is the reminder of $a \div 256$.

- $h(u)$ is an integer of $\left[0,2^{64}-1\right]$,


## Dynnikov's coordinates - Properties

- Fact: Dynnikov's coordinates $\rho_{D}(u)$ can be easily computed.
- At most $O(|u|)$ elementary op. in the semiring $(\mathbb{Z} \cup\{+\infty\}$, max,+$)$.
- Theorem (I. Dynnikov 2002) For two $S_{n}$ words $u$ and $v$, we have

$$
\rho_{D}(u)=\rho_{D}(v) \Leftrightarrow u \equiv v
$$

and Dehornoy ordering relation $\bar{u}<\bar{v}$ can be read on $\rho_{D}\left(u^{-1} v\right)$.

- Definition : For $u \in S_{4}^{*}$ we define

$$
h(u)=\sum_{i=0}^{7} \operatorname{rem}\left(c_{i}, 256\right) 256^{i}
$$

where $\left(c_{0}, \ldots, c_{7}\right)=\rho_{D}(u)$ and rem $(c, 256)$ is the reminder of $a \div 256$.

- $h(u)$ is an integer of $\left[0,2^{64}-1\right]$,
- well-suited for 64 -bits computers.


## Bottleneck

## Bottleneck

- Fact : With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
- $W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
- $W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.


## Bottleneck

- Fact : With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
- $W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
- $W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.
- As RAM capacity is not so big (some Go), we have a problem.


## Bottleneck

- Fact : With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
$-W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
- $W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.
- As RAM capacity is not so big (some Go), we have a problem.
- Massive use of swap memory, which impact performences.


## Bottleneck

- Fact: With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
- $W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
$-W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.
- As RAM capacity is not so big (some Go), we have a problem.
- Massive use of swap memory, which impact performences.
- Idea : Divides $B_{n}\left(S_{n} ; \ell\right)$ on many independant pieces.


## Bottleneck

- Fact: With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
$-W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
- $W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.
- As RAM capacity is not so big (some Go), we have a problem.
- Massive use of swap memory, which impact performences.
- Idea : Divides $B_{n}\left(S_{n} ; \ell\right)$ on many independant pieces.
- Reduce RAM consumption.


## Bottleneck

- Fact: With the current version of our algorirhm, the computation of $W_{\ell} \vdash B_{n}\left(S_{n} ; \ell\right)$ requires to have two sets loaded in memory :
$-W_{\ell-1} \vdash B_{n}\left(S_{n} ; \ell-1\right)$,
- $W_{\ell-2} \vdash B_{n}\left(S_{n} ; \ell-2\right)$.
- As RAM capacity is not so big (some Go), we have a problem.
- Massive use of swap memory, which impact performences.
- Idea : Divides $B_{n}\left(S_{n} ; \ell\right)$ on many independant pieces.
- Reduce RAM consumption.
- Allow parallelization.


## Braid permutaion

- Definition : $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is the morphism defined by $\pi\left(\sigma_{i}\right)=(i i+1)$.


## Braid permutaion

- Definition : $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is the morphism defined by $\pi\left(\sigma_{i}\right)=(i i+1)$.
- $\pi(\beta)$ is the permutation of $\mathfrak{S}_{n}$ such that the strand ending at position $i$ starts at position $\pi(\beta)(i)$.


## Braid permutaion

- Definition : $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is the morphism defined by $\pi\left(\sigma_{i}\right)=(i i+1)$.
- $\pi(\beta)$ is the permutation of $\mathfrak{S}_{n}$ such that the strand ending at position $i$ starts at position $\pi(\beta)(i)$.
- Example : $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}$,


## Braid permutaion

- Definition : $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is the morphism defined by $\pi\left(\sigma_{i}\right)=(i i+1)$.
- $\pi(\beta)$ is the permutation of $\mathfrak{S}_{n}$ such that the strand ending at position $i$ starts at position $\pi(\beta)(i)$.
- Example : $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}$,

$$
\pi(\beta)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

## Braid permutaion

- Definition : $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is the morphism defined by $\pi\left(\sigma_{i}\right)=(i i+1)$.
- $\pi(\beta)$ is the permutation of $\mathfrak{S}_{n}$ such that the strand ending at position $i$ starts at position $\pi(\beta)(i)$.
- Example : $\beta=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}$,

$$
\pi(\beta)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& \pi(\beta)(1)=3 \\
& \pi(\beta)(3)=2 \\
& \pi(\beta)(2)=1
\end{aligned}
$$

## Linking numbers

- Definition : Let $\beta \in B_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i \neq j$. The linking number $\ell_{i, j}(\beta)$ is the algebraic number of crossings involving the strands $i$ and $j$ in $\beta$.


## Linking numbers

- Definition: Let $\beta \in B_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i \neq j$. The linking number $\ell_{i, j}(\beta)$ is the algebraic number of crossings involving the strands $i$ and $j$ in $\beta$.
- Example :

$$
\begin{aligned}
& \ell_{1,2}=2 \\
& \ell_{1,3}=-1 \\
& \ell_{1,3}=1
\end{aligned}
$$

## Linking numbers

- Definition : Let $\beta \in B_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i \neq j$. The linking number $\ell_{i, j}(\beta)$ is the algebraic number of crossings involving the strands $i$ and $j$ in $\beta$.
- Example :

- Lemma: For $\beta, \gamma$ in $B_{n}$ and $1 \leqslant i<j \leqslant n$ we have

$$
\ell_{i, j}(\beta \cdot \gamma)=\ell_{i, j}(\beta)+\ell_{\pi(\beta)^{-1}(i), \pi(\beta)^{-1}(j)}(\gamma),
$$

with the convention $\ell_{p, q}=\ell_{q, p}$ for $p>q$.

## Linking numbers

- Definition : Let $\beta \in B_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i \neq j$. The linking number $\ell_{i, j}(\beta)$ is the algebraic number of crossings involving the strands $i$ and $j$ in $\beta$.
- Example :

-Lemma: For $\beta, \gamma$ in $B_{n}$ and $1 \leqslant i<j \leqslant n$ we have

$$
\ell_{i, j}(\beta \cdot \gamma)=\ell_{i, j}(\beta)+\ell_{\pi(\beta)^{-1}(i), \pi(\beta)^{-1}(j)}(\gamma),
$$

with the convention $\ell_{p, q}=\ell_{q, p}$ for $p>q$.

- Corollary : For $\alpha \in S_{n}, \ell_{i, j}(\beta \cdot \alpha)$ depends only of $\ell_{*, *}(\beta)$ and $\pi(\beta)$.


## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

- $u \equiv v$ implies $\tau(\bar{u})=\tau(\bar{v})$.


## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

- $u \equiv v$ implies $\tau(\bar{u})=\tau(\bar{v})$.
- Fact : For $\beta \in B_{n}$ and $\alpha \in S_{n}$, the template $\tau(\beta) \odot \alpha=\tau(\beta \alpha)$ depends only of $\tau(\beta)$ and $\alpha$.


## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

- $u \equiv v$ implies $\tau(\bar{u})=\tau(\bar{v})$.
- Fact: For $\beta \in B_{n}$ and $\alpha \in S_{n}$, the template $\tau(\beta) \odot \alpha=\tau(\beta \alpha)$ depends only of $\tau(\beta)$ and $\alpha$.
- Definition : For $t \in T_{n}\left(S_{n} ; \ell\right)$ we write

$$
B_{n}\left(S_{n} ; \ell, t\right)=\left\{\beta \in B_{n}\left(S_{n} ; \ell\right) \text { s.t. } \tau(\beta)=t\right\} \text {. }
$$

## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

- $u \equiv v$ implies $\tau(\bar{u})=\tau(\bar{v})$.
- Fact: For $\beta \in B_{n}$ and $\alpha \in S_{n}$, the template $\tau(\beta) \odot \alpha=\tau(\beta \alpha)$ depends only of $\tau(\beta)$ and $\alpha$.
- Definition : For $t \in T_{n}\left(S_{n} ; \ell\right)$ we write

$$
B_{n}\left(S_{n} ; \ell, t\right)=\left\{\beta \in B_{n}\left(S_{n} ; \ell\right) \text { s.t. } \tau(\beta)=t\right\} .
$$

- The sets $B_{n}\left(S_{n} ; \ell, t\right)$ provide a partition of $B_{n}\left(S_{n} ; \ell\right)$.


## Braid template

- Definition : The template of $\beta \in B_{n}$ is

$$
\tau(\beta)=\left(\pi(\beta), \ell_{1,2}(\beta), \ldots, \ell_{n-1, n}(\beta)\right) \in \mathfrak{S}_{n} \times \mathbb{Z}^{\frac{n(n+1)}{2}}
$$

For $\ell \in \mathbb{N}$, we put $T_{n}\left(S_{n} ; \ell\right)=\tau\left(B_{n}\left(S_{n} ; \ell\right)\right)$.

- $u \equiv v$ implies $\tau(\bar{u})=\tau(\bar{v})$.
- Fact: For $\beta \in B_{n}$ and $\alpha \in S_{n}$, the template $\tau(\beta) \odot \alpha=\tau(\beta \alpha)$ depends only of $\tau(\beta)$ and $\alpha$.
- Definition : For $t \in T_{n}\left(S_{n} ; \ell\right)$ we write

$$
B_{n}\left(S_{n} ; \ell, t\right)=\left\{\beta \in B_{n}\left(S_{n} ; \ell\right) \text { s.t. } \tau(\beta)=t\right\} .
$$

- The sets $B_{n}\left(S_{n} ; \ell, t\right)$ provide a partition of $B_{n}\left(S_{n} ; \ell\right)$.
- Fact :

$$
B_{n}\left(S_{n} ; \ell, t\right)=\bigcup_{\alpha \in S_{n}}\left\{\beta \cdot \alpha \text { with } \beta \in B_{n}\left(S_{n} ; \ell-1, t \odot \alpha^{-1}\right)\right\}
$$

Parallelization

## Parallelization

- Assume we have stored a representative sets of $B_{n}\left(S_{n} ; \ell^{\prime}, t^{\prime}\right)$ for all $\ell^{\prime} \leqslant \ell$ and all template $t^{\prime} \in T_{n}\left(S_{n} ; \ell^{\prime}\right)$.


## Parallelization

- Assume we have stored a representative sets of $B_{n}\left(S_{n} ; \ell^{\prime}, t^{\prime}\right)$ for all $\ell^{\prime} \leqslant \ell$ and all template $t^{\prime} \in T_{n}\left(S_{n} ; \ell^{\prime}\right)$.
- On a hard disk typically.


## Parallelization

- Assume we have stored a representative sets of $B_{n}\left(S_{n} ; \ell^{\prime}, t^{\prime}\right)$ for all $\ell^{\prime} \leqslant \ell$ and all template $t^{\prime} \in T_{n}\left(S_{n} ; \ell^{\prime}\right)$.
- On a hard disk typically.
- Algorithm (Storing a representative set of $\left.B_{n}\left(S_{n}, \ell, t\right)\right)$ :

```
\(W_{\ell, t} \leftarrow \emptyset\)
\(W_{\ell-2, t} \leftarrow \operatorname{Load}(\ell-2, t)\)
for \(\alpha \in S_{n}\) do
    \(t^{\prime} \leftarrow t \odot \alpha^{-1}\)
    \(W_{\ell-1, t^{\prime}} \leftarrow \operatorname{Load}\left(\ell-1, t^{\prime}\right)\)
    for \(u \in W_{\ell-1, t^{\prime}}\) do
        \(v \leftarrow u \alpha\)
        if \(v \nrightarrow W_{\ell-2, t}\) and \(v \nexists W_{\ell, t}\) then
            \(W_{\ell, t} \leftarrow W_{\ell, t} \sqcup\{v\}\)
        end if
        end for
end for
Save \(\left(W_{\ell, t}, \ell, t\right)\)
```


## Stable bijection

- Definition: A bijection $\mu$ of $S_{n}^{*}$ is $S_{n}$-stable whenever:
- $\mu$ preserves the word length,
- for all $u, v$ in $S_{n}^{*}$ we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
- for all $u \in S_{n}^{*}$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\bar{u})$


## Stable bijection

- Definition : A bijection $\mu$ of $S_{n}^{*}$ is $S_{n}$-stable whenever:
- $\mu$ preserves the word length,
- for all $u, v$ in $S_{n}^{*}$ we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
- for all $u \in S_{n}^{*}$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\bar{u})$
- We have the following diagram

$$
\begin{aligned}
& S_{n}^{\ell} \xrightarrow{\mu} S_{n}^{\ell} \\
& \tau \downarrow \downarrow \\
& T_{n}\left(S_{n} ; \ell\right) \underset{\mu^{T}}{\longrightarrow} T_{n}\left(S_{n} ; \ell\right)
\end{aligned}
$$

## Stable bijection

- Definition : A bijection $\mu$ of $S_{n}^{*}$ is $S_{n}$-stable whenever:
- $\mu$ preserves the word length,
- for all $u, v$ in $S_{n}^{*}$ we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
- for all $u \in S_{n}^{*}$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\bar{u})$
- We have the following diagram

- Proposition: If $W \vdash B_{n}\left(S_{n} ; \ell, t\right)$ then $\mu(W) \vdash B_{n}\left(S_{n} ; \ell, \mu^{T}(t)\right)$


## Stable bijection

- Definition: A bijection $\mu$ of $S_{n}^{*}$ is $S_{n}$-stable whenever:
- $\mu$ preserves the word length,
- for all $u, v$ in $S_{n}^{*}$ we have $\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v$
- for all $u \in S_{n}^{*}$, the template $\tau(\overline{\mu(u)})$ depends only of $\tau(\bar{u})$
- We have the following diagram

- Proposition : If $W \vdash B_{n}\left(S_{n} ; \ell, t\right)$ then $\mu(W) \vdash B_{n}\left(S_{n} ; \ell, \mu^{T}(t)\right)$
- It is sufficient to compute only one of these sets.


## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:


## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right)=\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right)
$$

## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\operatorname{mir}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell} \cdots x_{1}\right)
\end{aligned}
$$

## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\operatorname{mir}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell} \cdots x_{1}\right) \\
\Phi_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\Phi_{n}\left(x_{1}\right) \cdots \Phi_{m}\left(x_{\ell}\right)\right)
\end{aligned}
$$

## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\operatorname{mir}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell} \cdots x_{1}\right) \\
\Phi_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\Phi_{n}\left(x_{1}\right) \cdots \Phi_{m}\left(x_{\ell}\right)\right) \quad \text { where } \Phi_{n}\left(\sigma_{i}^{e}\right)=\sigma_{n-i}^{e}
\end{aligned}
$$

## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\operatorname{mir}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell} \cdots x_{1}\right) \\
\Phi_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\Phi_{n}\left(x_{1}\right) \cdots \Phi_{m}\left(x_{\ell}\right)\right) \quad \text { where } \Phi_{n}\left(\sigma_{i}^{e}\right)=\sigma_{n-i}^{e}
\end{aligned}
$$

- They are all $\Sigma_{n}$-stable.


## Stable bijections - Artin case

Here $S_{n}=\Sigma_{n}$ and we fix $\ell \geqslant 2$.

- Definition:

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\operatorname{mir}_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell} \cdots x_{1}\right) \\
\Phi_{\Sigma_{n}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\Phi_{n}\left(x_{1}\right) \cdots \Phi_{m}\left(x_{\ell}\right)\right) \quad \text { where } \Phi_{n}\left(\sigma_{i}^{e}\right)=\sigma_{n-i}^{e}
\end{aligned}
$$

- They are all $\Sigma_{n}$-stable.
- Lemma : The subgroups $G_{\Sigma_{n}}$ of bijections of $T_{n}\left(\Sigma_{n} ; \ell\right)$ generated by $\left\{\operatorname{inv}_{\Sigma_{n}}^{T}, \operatorname{mir} \sum_{\Sigma_{n}}^{T}, \Phi_{\Sigma_{n}}^{T}\right\}$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$.


## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :


## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\operatorname{inv}_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right)=\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right)
$$

## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\varphi_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\varphi_{n}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{\ell}\right)\right)
\end{aligned}
$$

## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\varphi_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\varphi_{n}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{\ell}\right)\right)
\end{aligned}
$$

where

$$
\varphi_{n}\left(a_{i, j}^{e}\right)= \begin{cases}a_{i+1, j+1}^{e} & \text { if } j<n \\ a_{1, i+1}^{e} & \text { if } j=m\end{cases}
$$

## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\varphi_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\varphi_{n}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{\ell}\right)\right)
\end{aligned}
$$

where

$$
\varphi_{n}\left(a_{i, j}^{e}\right)= \begin{cases}a_{i+1, j+1}^{e} & \text { if } j<n \\ a_{1, i+1}^{e} & \text { if } j=m\end{cases}
$$

- They are all $\sum_{n}^{*}$-stable.


## Stable bijections - dual case

Here $S_{n}=\sum_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\begin{aligned}
\operatorname{inv}_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\varphi_{\Sigma_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\varphi_{n}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{\ell}\right)\right)
\end{aligned}
$$

where

$$
\varphi_{n}\left(a_{i, j}^{e}\right)= \begin{cases}a_{i+1, j+1}^{e} & \text { if } j<n \\ a_{1, i+1}^{e} & \text { if } j=m\end{cases}
$$

- They are all $\Sigma_{n}^{*}$-stable.
- No counter part of mir $\Sigma_{n}$.


## Stable bijections - dual case

Here $S_{n}=\Sigma_{n}^{*}$ and we fix $\ell \geqslant 2$.

- Definition :

$$
\begin{aligned}
\operatorname{inv}_{\sum_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(x_{\ell}^{-1} \cdots x_{1}^{-1}\right) \\
\varphi_{\sum_{n}^{*}}\left(x_{1} \cdots x_{\ell}\right) & =\left(\varphi_{n}\left(x_{1}\right) \cdots \varphi_{n}\left(x_{\ell}\right)\right)
\end{aligned}
$$

where

$$
\varphi_{n}\left(a_{i, j}^{e}\right)= \begin{cases}a_{i+1, j+1}^{e} & \text { if } j<n \\ a_{1, i+1}^{e} & \text { if } j=m\end{cases}
$$

- They are all $\Sigma_{n}^{*}$-stable.
- No counter part of $\operatorname{mir}_{\Sigma_{n}}$.
- Lemma : The subgroups $G_{\Sigma_{n}^{*}}$ of bijections of $T_{n}\left(\Sigma_{n}^{*} ; \ell\right)$ generated by $\left\{\operatorname{inv} \sum_{n}^{*}, \varphi_{\sum_{n}^{*}}^{T}\right\}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.


## Template reduction

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$

## Template reduction

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$

- Definition : A template $t \in T_{n}\left(S_{n}\right)$ is reduced if it is minimal in $G_{S_{n}} \star t$.


## Template reduction

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$

- Definition : A template $t \in T_{n}\left(S_{n}\right)$ is reduced if it is minimal in $G_{S_{n}} \star t$.
- Proposition :

$$
\begin{aligned}
s\left(B_{n}, S_{n} ; \ell\right) & =\sum_{t \in T_{n}\left(S_{n} ; \ell\right)} \operatorname{card}\left(B_{n}\left(S_{n} ; \ell, t\right)\right) \\
& =\sum_{\substack{t \in T_{n}\left(S_{n} ; \ell\right) \\
t \text { reduced }}} \operatorname{card}\left(B_{n}\left(S_{n} ; \ell, t\right)\right) \times \operatorname{card}\left(G_{S_{n}} \star t\right)
\end{aligned}
$$

## Template reduction

$S_{n}$ denotes either $\Sigma_{n}$ or $\Sigma_{n}^{*}$

- Definition : A template $t \in T_{n}\left(S_{n}\right)$ is reduced if it is minimal in $G_{S_{n}} \star t$.
- Proposition :

$$
\begin{aligned}
s\left(B_{n}, S_{n} ; \ell\right) & =\sum_{t \in T_{n}\left(S_{n} ; \ell\right)} \operatorname{card}\left(B_{n}\left(S_{n} ; \ell, t\right)\right) \\
& =\sum_{\substack{t \in T_{n}\left(S_{n} ; \ell\right) \\
t \text { reduced }}} \operatorname{card}\left(B_{n}\left(S_{n} ; \ell, t\right)\right) \times \operatorname{card}\left(G_{S_{n}} \star t\right)
\end{aligned}
$$

- Can be effictively used from an algorithmic point of view.


## Experimentation

- Implementation : Distribued C++ code based on a clients / server model.


## Experimentation

- Implementation : Distribued C++ code based on a clients / server model.
- Machine : A node of the computationnal plateform Calculco with - 256 Go of RAM memory
- 2 processors with 64 cores each for a total of 128 cores
- with an access to a distribued storage space of 30 To


## Experimentation

- Implementation : Distribued C++ code based on a clients / server model.
- Machine : A node of the computationnal plateform Calculco with
- 256 Go of RAM memory
- 2 processors with 64 cores each for a total of 128 cores
- with an access to a distribued storage space of 30 To
- Validation of L. Sabalka formulas :

$$
\begin{aligned}
& \mathcal{S}\left(B_{3}, \Sigma_{3}\right)=\frac{(t+1)\left(2 t^{3}-t^{2}+t-1\right)}{(t-1)(2 t-1)\left(t^{2}+t-1\right)} \\
& \mathcal{G}\left(B_{3}, \Sigma_{3}\right)=\frac{t^{4}+3 t^{3}+t+1}{\left(t^{2}+2 t-1\right)\left(t^{2}+t-1\right)}
\end{aligned}
$$

Three strand - Dual case

Three strand - Dual case

| $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ |
| ---: | ---: | ---: |
| 0 | 1 | 1 |
| 1 | 6 | 6 |
| 2 | 20 | 30 |
| 3 | 54 | 126 |
| 4 | 134 | 498 |
| 5 | 318 | 1926 |
| 6 | 734 | 7410 |
| 7 | 1662 | 28566 |
| 8 | 3710 | 110658 |
| 9 | 8190 | 431046 |
| 10 | 17918 | 1687890 |


| $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ |
| ---: | ---: | ---: |
| 11 | 38910 | 6639606 |
| 12 | 83966 | 26216418 |
| 13 | 180222 | 103827366 |
| 14 | 385022 | 412169970 |
| 15 | 819198 | 1639212246 |
| 16 | 1736702 | 6528347778 |
| 17 | 3670014 | 26027690886 |
| 18 | 7733246 | 103853269650 |
| 19 | 16252926 | 414639810486 |
| 20 | 34078718 | 1656237864738 |
| 21 | 71303166 | 6617984181606 |

- Conjecture :

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{(t+1)\left(2 t^{2}-1\right)}{(t-1)(2 t-1)^{2}}, \quad \mathcal{G}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{12 t^{3}-2 t^{2}+3 t-1}{(2 t-1)(3 t-1)(4 t-1)} .
$$

Three strand - Dual case

| $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ |
| ---: | ---: | ---: |
| 0 | 1 | 1 |
| 1 | 6 | 6 |
| 2 | 20 | 30 |
| 3 | 54 | 126 |
| 4 | 134 | 498 |
| 5 | 318 | 1926 |
| 6 | 734 | 7410 |
| 7 | 1662 | 28566 |
| 8 | 3710 | 110658 |
| 9 | 8190 | 431046 |
| 10 | 17918 | 1687890 |


| $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ |
| ---: | ---: | ---: |
| 11 | 38910 | 6639606 |
| 12 | 83966 | 26216418 |
| 13 | 180222 | 103827366 |
| 14 | 385022 | 412169970 |
| 15 | 819198 | 1639212246 |
| 16 | 1736702 | 6528347778 |
| 17 | 3670014 | 26027690886 |
| 18 | 7733246 | 103853269650 |
| 19 | 16252926 | 414639810486 |
| 20 | 34078718 | 1656237864738 |
| 21 | 71303166 | 6617984181606 |

- Conjecture :

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{(t+1)\left(2 t^{2}-1\right)}{(t-1)(2 t-1)^{2}}, \quad \mathcal{G}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{12 t^{3}-2 t^{2}+3 t-1}{(2 t-1)(3 t-1)(4 t-1)} .
$$

Three strand - Dual case

| $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $\ell$ | $s\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ | $g\left(B_{3}, \Sigma_{3}^{*} ; \ell\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | , | 1 | 11 | 38910 | 6639606 |
| 1 | 6 | 6 | 12 | 83966 | 26216418 |
| 2 | 20 | 30 | 13 | 180222 | 103827366 |
| 3 | 54 | 126 | 14 | 385022 | 412169970 |
| 4 | 134 | 498 | 15 | 819198 | 1639212246 |
| 5 | 318 | 1926 | 16 | 1736702 | 6528347778 |
| 6 | 734 | 7410 | 17 | 3670014 | 26027690886 |
| 7 | 1662 | 28566 | 18 | 7733246 | 103853269650 |
| 8 | 3710 | 110658 | 19 | 16252926 | 414639810486 |
| 9 | 8190 | 431046 | 20 | 34078718 | 1656237864738 |
| 10 | 17918 | 1687890 | 21 | 71303166 | 6617984181606 |

- Conjecture :

$$
\mathcal{S}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{(t+1)\left(2 t^{2}-1\right)}{(t-1)(2 t-1)^{2}}, \quad \mathcal{G}\left(B_{3}, \Sigma_{3}^{*}\right)=\frac{12 t^{3}-2 t^{2}+3 t-1}{(2 t-1)(3 t-1)(4 t-1)} .
$$

- With growth rates of 2 and 4 respectively.

Four strands - Artin case

## Four strands - Artin case

| $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 13 | 9007466 | 281799158 |
| 1 | 6 | 6 | 14 | 27218486 | 1153638466 |
| 2 | 26 | 30 | 15 | 82133734 | 4710108514 |
| 3 | 98 | 142 | 16 | 247557852 | 19186676438 |
| 4 | 338 | 646 | 17 | 745421660 | 78004083510 |
| 5 | 1110 | 2870 | 18 | 2242595598 | 316591341866 |
| 6 | 3542 | 12558 | 19 | 6741618346 | 1283041428650 |
| 7 | 11098 | 54026 | 20 | 20252254058 | 5193053664554 |
| 8 | 34362 | 229338 | 21 | 60800088680 | 20994893965398 |
| 9 | 105546 | 963570 | 22 | 182422321452 | 84795261908498 |
| 10 | 322400 | 4016674 | 23 | 547032036564 | 342173680884002 |
| 11 | 980904 | 16641454 | 24 | 1639548505920 | 1379691672165334 |
| 12 | 2975728 | 68614150 | 25 | 4911638066620 | 5559241797216166 |
|  |  |  |  |  |  |

## Four strands - Artin case

| $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 13 | 9007466 | 281799158 |
| 1 | 6 | 6 | 14 | 27218486 | 1153638466 |
| 2 | 26 | 30 | 15 | 82133734 | 4710108514 |
| 3 | 98 | 142 | 16 | 247557852 | 19186676438 |
| 4 | 338 | 646 | 17 | 745421660 | 78004083510 |
| 5 | 1110 | 2870 | 18 | 2242595598 | 316591341866 |
| 6 | 3542 | 12558 | 19 | 6741618346 | 1283041428650 |
| 7 | 11098 | 54026 | 20 | 20252254058 | 5193053664554 |
| 8 | 34362 | 229338 | 21 | 60800088680 | 20994893965398 |
| 9 | 105546 | 963570 | 22 | 182422321452 | 84795261908498 |
| 10 | 322400 | 4016674 | 23 | 547032036564 | 342173680884002 |
| 11 | 980904 | 16641454 | 24 | 1639548505920 | 1379691672165334 |
| 12 | 2975728 | 68614150 | 25 | 4911638066620 | 5559241797216166 |

- No good conjectures.


## Four strands - Artin case

| $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 13 | 9007466 | 281799158 |
| 1 | 6 | 6 | 14 | 27218486 | 1153638466 |
| 2 | 26 | 30 | 15 | 82133734 | 4710108514 |
| 3 | 98 | 142 | 16 | 247557852 | 19186676438 |
| 4 | 338 | 646 | 17 | 745421660 | 78004083510 |
| 5 | 1110 | 2870 | 18 | 2242595598 | 316591341866 |
| 6 | 3542 | 12558 | 19 | 6741618346 | 1283041428650 |
| 7 | 11098 | 54026 | 20 | 20252254058 | 5193053664554 |
| 8 | 34362 | 229338 | 21 | 60800088680 | 20994893965398 |
| 9 | 105546 | 963570 | 22 | 182422321452 | 84795261908498 |
| 10 | 322400 | 4016674 | 23 | 547032036564 | 342173680884002 |
| 11 | 980904 | 16641454 | 24 | 1639548505920 | 1379691672165334 |
| 12 | 2975728 | 68614150 | 25 | 4911638066620 | 5559241797216166 |

- No good conjectures.
- The storage of all braids of $B_{4}$ with geodesic $\Sigma_{4}$-length $\leqslant 25$


## Four strands - Artin case

| $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $\ell$ | $s\left(B_{4}, \Sigma_{4} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4} ; \ell\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 13 | 9007466 | 281799158 |
| 1 | 6 | 6 | 14 | 27218486 | 1153638466 |
| 2 | 26 | 30 | 15 | 82133734 | 4710108514 |
| 3 | 98 | 142 | 16 | 247557852 | 19186676438 |
| 4 | 338 | 646 | 17 | 745421660 | 78004083510 |
| 5 | 1110 | 2870 | 18 | 2242595598 | 316591341866 |
| 6 | 3542 | 12558 | 19 | 6741618346 | 1283041428650 |
| 7 | 11098 | 54026 | 20 | 20252254058 | 5193053664554 |
| 8 | 34362 | 229338 | 21 | 60800088680 | 20994893965398 |
| 9 | 105546 | 963570 | 22 | 182422321452 | 84795261908498 |
| 10 | 322400 | 4016674 | 23 | 547032036564 | 342173680884002 |
| 11 | 980904 | 16641454 | 24 | 1639548505920 | 1379691672165334 |
| 12 | 2975728 | 68614150 | 25 | 4911638066620 | 5559241797216166 |

- No good conjectures.
- The storage of all braids of $B_{4}$ with geodesic $\Sigma_{4}$-length $\leqslant 25$ requires 26 To of disk space.

Four strands - dual case

## Four strands - dual case

| $\ell$ | $s\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $\ell$ | $S\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 9 | 7348366 | 708368540 |
| 1 | 12 | 12 | 10 | 35773324 | 6128211364 |
| 2 | 84 | 132 | 11 | 173885572 | 52826999612 |
| 3 | 478 | 1340 | 12 | 844277874 | 454136092148 |
| 4 | 2500 | 12788 | 13 | 4095929948 | 3895624824092 |
| 5 | 12612 | 117452 | 14 | 19858981932 | 33359143410468 |
| 6 | 62570 | 1053604 | 15 | 96242356958 | 285259736104444 |
| 7 | 303356 | 9311420 | 16 | 466262144180 | 2436488694821748 |
| 8 | 1506212 | 81488628 | 17 | 2258320991652 | 20790986096580060 |

## Four strands - dual case

| $\ell$ | $s\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $\ell$ | $S\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 9 | 7348366 | 708368540 |
| 1 | 12 | 12 | 10 | 35773324 | 6128211364 |
| 2 | 84 | 132 | 11 | 173885572 | 52826999612 |
| 3 | 478 | 1340 | 12 | 844277874 | 454136092148 |
| 4 | 2500 | 12788 | 13 | 4095929948 | 3895624824092 |
| 5 | 12612 | 117452 | 14 | 19858981932 | 33359143410468 |
| 6 | 62570 | 1053604 | 15 | 96242356958 | 285259736104444 |
| 7 | 303356 | 9311420 | 16 | 466262144180 | 2436488694821748 |
| 8 | 1506212 | 81488628 | 17 | 2258320991652 | 20790986096580060 |

- Conjecture :

$$
\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)=-\frac{(t+1)\left(10 t^{6}-10 t^{5}-3 t^{4}+11 t^{3}-4 t^{2}-3 t+1\right)}{(t-1)\left(5 t^{2}-5 t+1\right)\left(10 t^{4}-20 t^{3}+19^{2}-8 t+1\right)}
$$

## Four strands - dual case

| $\ell$ | $s\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $\ell$ | $S\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 9 | 7348366 | 708368540 |
| 1 | 12 | 12 | 10 | 35773324 | 6128211364 |
| 2 | 84 | 132 | 11 | 173885572 | 52826999612 |
| 3 | 478 | 1340 | 12 | 844277874 | 454136092148 |
| 4 | 2500 | 12788 | 13 | 4095929948 | 3895624824092 |
| 5 | 12612 | 117452 | 14 | 19858981932 | 33359143410468 |
| 6 | 62570 | 1053604 | 15 | 96242356958 | 285259736104444 |
| 7 | 303356 | 9311420 | 16 | 466262144180 | 2436488694821748 |
| 8 | 1506212 | 81488628 | 17 | 2258320991652 | 20790986096580060 |

- Conjecture :

$$
\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)=-\frac{(t+1)\left(10 t^{6}-10 t^{5}-3 t^{4}+11 t^{3}-4 t^{2}-3 t+1\right)}{(t-1)\left(5 t^{2}-5 t+1\right)\left(10 t^{4}-20 t^{3}+19^{2}-8 t+1\right)}
$$

- The growth rate of $\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)$ is $\simeq 4.8$.


## Four strands - dual case

| $\ell$ | $s\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $\ell$ | $S\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ | $g\left(B_{4}, \Sigma_{4}^{*} ; \ell\right)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 9 | 7348366 | 708368540 |
| 1 | 12 | 12 | 10 | 35773324 | 6128211364 |
| 2 | 84 | 132 | 11 | 173885572 | 52826999612 |
| 3 | 478 | 1340 | 12 | 844277874 | 454136092148 |
| 4 | 2500 | 12788 | 13 | 4095929948 | 3895624824092 |
| 5 | 12612 | 117452 | 14 | 19858981932 | 33359143410468 |
| 6 | 62570 | 1053604 | 15 | 96242356958 | 285259736104444 |
| 7 | 303356 | 9311420 | 16 | 466262144180 | 2436488694821748 |
| 8 | 1506212 | 81488628 | 17 | 2258320991652 | 20790986096580060 |

- Conjecture :

$$
\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)=-\frac{(t+1)\left(10 t^{6}-10 t^{5}-3 t^{4}+11 t^{3}-4 t^{2}-3 t+1\right)}{(t-1)\left(5 t^{2}-5 t+1\right)\left(10 t^{4}-20 t^{3}+19^{2}-8 t+1\right)}
$$

- The growth rate of $\mathcal{S}\left(B_{4}, \Sigma_{4}^{*}\right)$ is $\simeq 4.8$.
- No good conjecture for $\mathcal{G}\left(B_{4}, \Sigma_{4}^{*}\right)$.


## Thank you!

